On Isoclinic Extensions of Lie Algebras and Nilpotent Lie Algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 15-22.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we present the concept of isoclinism of Lie algebras and its relationship to the Schur multiplier of Lie algebras. Moreover, we prove some properties of a pair of nilpotent Lie algebras.
Keywords: Schur multiplier, isoclinism, nilpotent Lie algebras
@article{DMGAA_2021_41_1_a1,
     author = {Arabyani, Homayoon and Sadeghifard, Mohammad Javad},
     title = {On {Isoclinic} {Extensions} of {Lie} {Algebras} and {Nilpotent} {Lie} {Algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {15--22},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a1/}
}
TY  - JOUR
AU  - Arabyani, Homayoon
AU  - Sadeghifard, Mohammad Javad
TI  - On Isoclinic Extensions of Lie Algebras and Nilpotent Lie Algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 15
EP  - 22
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a1/
LA  - en
ID  - DMGAA_2021_41_1_a1
ER  - 
%0 Journal Article
%A Arabyani, Homayoon
%A Sadeghifard, Mohammad Javad
%T On Isoclinic Extensions of Lie Algebras and Nilpotent Lie Algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 15-22
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a1/
%G en
%F DMGAA_2021_41_1_a1
Arabyani, Homayoon; Sadeghifard, Mohammad Javad. On Isoclinic Extensions of Lie Algebras and Nilpotent Lie Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 15-22. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a1/

[1] H. Arabyani, Bounds for the dimension of the c-nilpotent multiplier of a pair of Lie algebras, Bull. Iranian Math. Soc. 43 (2017) 2411–2418. doi:10.1142/S1793557119500074

[2] H. Arabyani, Some results on the c-nilpotent multiplier of a pair of Lie algebras, Bull. Iranian Math. Soc. 45 (2019) 205–212. doi:10.1007/s41980-018-0126-6

[3] H. Arabyani, On dimension of c-nilpotent multiplier of a pair of Lie algebras, Southeast Asian Bull. Math. 43 (2019) 305–312.

[4] H. Arabyani, Bounds for the dimension of Lie algebras, J. Math. Ext. 13 (2019) 231–239.

[5] H. Arabyani, F. Saeedi, M.R.R. Moghaddam and E. Khamseh, Characterization of nilpotent Lie algebras pair by their Schur multipliers, Comm. Algebra 42 (2014) 5474–5483. doi:10.1080/00927872.2012.677081

[6] H. Arabyani, On the capability and tensor center of Lie algebras, Southeast Asian Bull. Math. 43 (2019) 631–637.

[7] H. Arabyani and F. Saeedi, On dimensions of derived algebra and central factor of a Lie algebra, Bull. Iranian Math. Soc. 41 (2015) 1093–1102.

[8] M. Araskhan, The dimension of the c-nilpotent multiplier, J. Algebra 386 (2013) 105–112. doi:10.1016/j.jalgebra.2013.04.010

[9] P. Batten, K. Moneyhun and E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers, Comm. Algebra 24 (1996) 4319–4330. doi:10.1080/00927879608825817

[10] A. Gholamiyan and H. Eghdami, On the nilpotency of a pair of Lie algebras, Mathematica 32 (2016) 1–5.

[11] P. Hall, The classification of prime-power groups, J. Reine Angew. Math. 182 (1940) 130–141. doi:10.1515/crll.1940.182.130

[12] M. Hassanzadeh, A. Pourmirzaei and S. Kayvanfar, On the nilpotency of a pair of groups, Southeast Asian Bull. Math. 37 (2013) 67–77.

[13] K. Moneyhun, Isoclinisms in Lie algebras, Algebras Groups Geom. 11 (1994) 9–22.

[14] M.R.R. Moghaddam, A.R. Salemkar and A. Gholami, Some properties of Isologism of groups and Baer-invariants, Southeast Asian Bull. Math. 24 (2000) 255–261. doi:10.1007/s10012-000-0255-7

[15] H. Mohammadzadeh, A.R. Salemkar and Z. Riyahi, Isoclinic extensions of Lie algebras, Turk. J. Math. 37 (2013) 598–606.

[16] P. Niroomand, M. Parvizi and F.G. Russo, Some criteria for detecting capable Lie algebras, J. Algebra 384 (2013) 36–44. doi:10.1016/j.jalgebra.2013.02.033

[17] F. Saeedi, H. Arabyani and P. Niroomand, On dimension of Schur multiplier of nilpotent Lie algebra II, Asian-Eur. J. Math 10 (2017), 1750076 (8 pages). doi:10.1142/S1793557117500760

[18] H. Safa and H. Arabyani, Capable pairs of Lie algebras, Math. Proc. R. Ir. Acad. 118 A (2018) 39–45. doi:10.3318/pria.2018.118.05

[19] A.R. Salemkar, V. Alamian and H. Mohammadzadeh, Some properties of the Schur multiplier and covers of Lie algebras, Comm. Algebra. 36 (2001) 697–707. doi:10.1080/00927870701724193

[20] A.R. Salemkar, H. Bigdely and V. Alamian, Some properties on isoclinism of Lie algebras and covers, J. Algebra Appl. 7 (2008) 507–516. doi:10.1142/S0219498808002965

[21] A.R. Salemkar and F. Mirzaei, Characterizing n-isoclinism classes of Lie algebras, Comm. Algebra. 38 (2010) 3392–3403. doi:10.1080/00927870903117535

[22] S.M. Taheri and F. Shahini, Varietal nilpotent groups, World Appl. Sci. J. 12 (2011) 2314–2316.