Isomorphisms in EQ-Algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 267-274.

Voir la notice de l'article provenant de la source Library of Science

In this paper we investigate some isomorphism theorems in EQ-algebras. After establishing some basic results we give the Fundamental Homomorphism Theorem and by using it we state and prove some other isomorphism theorems. We also state and prove a correspondence theorem. Next, using some results of the theory of universal algebra we characterize subdirectly irreducible EQ-algebras.
Keywords: many-valued logics, Fuzzy type theory, EQ-algebra, homomorphism theorems
@article{DMGAA_2020_40_2_a9,
     author = {Bakhshi, M. and Khavari, M.R. and Nazifi, M.},
     title = {Isomorphisms in {EQ-Algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {267--274},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a9/}
}
TY  - JOUR
AU  - Bakhshi, M.
AU  - Khavari, M.R.
AU  - Nazifi, M.
TI  - Isomorphisms in EQ-Algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2020
SP  - 267
EP  - 274
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a9/
LA  - en
ID  - DMGAA_2020_40_2_a9
ER  - 
%0 Journal Article
%A Bakhshi, M.
%A Khavari, M.R.
%A Nazifi, M.
%T Isomorphisms in EQ-Algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2020
%P 267-274
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a9/
%G en
%F DMGAA_2020_40_2_a9
Bakhshi, M.; Khavari, M.R.; Nazifi, M. Isomorphisms in EQ-Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 267-274. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a9/

[1] P.B. Andrews, An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof (Kluwer Academic Publishers, Dordrecht, 2002). doi:10.1007/978-94-015-9934-4

[2] R.A. Borzooei and B.G. Saffar, States on EQ-algebras, J. Intell. Fuzzy Systems 29 (2015) 209–221. doi:10.3233/IFS-151588

[3] S. Burris and H.P. Sankapannavar, A course in universal algebra, Graduate Text Math. 78 (1981).

[4] N. Mohtashamnia and L. Torkzadeh, The lattice of prefilters of an EQ-algebra, Fuzzy Sets and Syst. 311 (2017) 86–98. doi:10.1016/j.fss.2016.04.015

[5] V. Novák, On fuzzy type theory, Fuzzy Sets and Syst. 149 (2005) 235–273. doi:10.1016/j.fss.2004.03.027

[6] V. Novák and B. De Baets, EQ-algebras, Fuzzy Sets and Syst. 160 (2009) 2956–2978. doi:10.1016/j.fss.2009.04.010

[7] V. Novák, M. El-Zekey and Radko Mesiar, On good EQ-algebras, Fuzzy Sets and Syst. 178 (2011) 1–23. doi:10.1016/j.fss.2011.05.011

[8] M. Ward and R.P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939) 335–354. doi:10.1090/S0002-9947-1939-1501995-3