Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2020_40_2_a7, author = {Srikanth, V.V.V.S.S.P.S. and Ratnamani, M.V. and Ramesh, S.}, title = {Characterization of {Almost} {Semi-Heyting} {Algebra}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {231--243}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a7/} }
TY - JOUR AU - Srikanth, V.V.V.S.S.P.S. AU - Ratnamani, M.V. AU - Ramesh, S. TI - Characterization of Almost Semi-Heyting Algebra JO - Discussiones Mathematicae. General Algebra and Applications PY - 2020 SP - 231 EP - 243 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a7/ LA - en ID - DMGAA_2020_40_2_a7 ER -
%0 Journal Article %A Srikanth, V.V.V.S.S.P.S. %A Ratnamani, M.V. %A Ramesh, S. %T Characterization of Almost Semi-Heyting Algebra %J Discussiones Mathematicae. General Algebra and Applications %D 2020 %P 231-243 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a7/ %G en %F DMGAA_2020_40_2_a7
Srikanth, V.V.V.S.S.P.S.; Ratnamani, M.V.; Ramesh, S. Characterization of Almost Semi-Heyting Algebra. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 231-243. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a7/
[1] R.F. Arens and I. Kaplansky, The topological representation of algebras, Trans. Amer. Math. Soc. 63 (1948) 457–481. doi:10.1090/S0002-9947-1948-0025453-6
[2] G. Birkhoff, Lattice Theory, 3rd ed., Colloq. Publ. Amer. Math. Soc. 25 (Providence, R.I., 1979).
[3] N.H. McCoy and D. Mantgomery, A representation of generalized Boolean ring, Duke. Math. 3 (1937) 455–459. doi:10.1215/S0012-7094-37-00335-1
[4] G.C. Rao, M.V. Ratnamani, K.P. Shum and Berhanu Assaye, Semi-Heyting almost distributive lattices, Lobachevskii J. Math. 36 (2015) 184–189. doi:10.1134/S1995080215020158
[5] G.C. Rao, M.V. Ratnamani and K.P. Shum, Almost semi-Heyting algebra SEA Bull. Math. 42 (2018) 95–110.
[6] A. Horn, Logic with truth values in linerly ordered Heyting algebrra, J. Symb. Logics 34 (1969) 395–408. doi:10.2307/2270905
[7] H.P. Sankappnaver, Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity, Category and General Algebraic Structures with Applications 2 (2014) 47–64.
[8] H.P. Sankappnaver, Expansion of semi-Heyting algebra, Studia Logica 98 (2011) 27–81. doi:10.1007/S11225-011-9322-6
[9] H.P. Sankppnaver, Heyting algebras with dual pseudocomplementation, Pacific J. Math. 107 (1985) 405–415. doi:10.2140/pjm.1985.117.405
[10] H.P. Sankappanavar, Semi-Heyting algebra: an abstraction from Heyting algebras, IX Congreso Monteiro (2007) 33–66.
[11] T. Skolem, Logico-combinatorial Investigations in the Satisfiability or Provability of Mathematical Propositions (Harvard University Press, Cambridge, 1920).
[12] N.V. Subrahmanyam, Lattice theory for certain classes of rings, Math. Ann. 139 (1960) 275–286. doi:10.1007/BF01352263
[13] N.V. Subrahmanyam, An extension of Boolean lattice theory, Math. Ann. 151 (1963) 332–345. doi:10.1007/BF01470824
[14] I. Sussman, A generalization for Boolean rings, Math. Ann. Bd. 136 (1958) 326–338. doi:10.1007/BF01360238
[15] U.M. Swamy and G.C. Rao, Almost distributive lattices, J. Asust. Math. Soc. 31 (1981) 77–91. doi:10.1017/S1446788700018498
[16] U.M. Swamy and G.C. Rao, Stone almost distributive lattices, SEA Bull. Math. 27 (2003) 513–526.
[17] U.M. Swamy, G.C. Rao and G. Rao Nanaji, Pseudo-complementation on almost distributive lattices, SEA Bull. Math. 24 (2000) 95–104.
[18] J. Von Neumann, On regular rings, Proc. Nat. Acad. Sci. U.S.A. 22 (1936) 707–713.