Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2020_40_2_a5, author = {Dutta, Utkal Keshari and Ray, Prasanta Kumar}, title = {On the {Partial} {Finite} {Alternating} {Sums} of {Reciprocals} of {Balancing} and {Lucas-Balancing} {Numbers}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {201--216}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a5/} }
TY - JOUR AU - Dutta, Utkal Keshari AU - Ray, Prasanta Kumar TI - On the Partial Finite Alternating Sums of Reciprocals of Balancing and Lucas-Balancing Numbers JO - Discussiones Mathematicae. General Algebra and Applications PY - 2020 SP - 201 EP - 216 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a5/ LA - en ID - DMGAA_2020_40_2_a5 ER -
%0 Journal Article %A Dutta, Utkal Keshari %A Ray, Prasanta Kumar %T On the Partial Finite Alternating Sums of Reciprocals of Balancing and Lucas-Balancing Numbers %J Discussiones Mathematicae. General Algebra and Applications %D 2020 %P 201-216 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a5/ %G en %F DMGAA_2020_40_2_a5
Dutta, Utkal Keshari; Ray, Prasanta Kumar. On the Partial Finite Alternating Sums of Reciprocals of Balancing and Lucas-Balancing Numbers. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 201-216. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a5/
[1] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart. 37 (1999) 98–105.
[2] Y. Choo, On the reciprocal of sums of products of Pell numbers, Int. J. Math. Anal. 12 (2018) 595–602. doi:10.12988/ijma.2018.81074
[3] S.H. Holliday and T. Komatsu, On the sum of reciprocal generalized Fibonacci numbers, Integers 11 (2011) 441–455. doi:10.1515/integ.2011.031
[4] E. Kilic and T. Arikan, More on the infinite sums of reciprocal Fibonacci, Pell and higher order recurrences, Appl. Math. Comput. 219 (2013) 7783–7788. doi:10.1016/j.amc.2013.02.003
[5] T. Komatsu and G.K. Panda, On several kinds of sums of balancing numbers, Ars Combin. (to appear), arXiv:1608.05918.
[6] R. Liu and A.Y. Wang, Sums of products of two reciprocal Fibonacci numbers, Adv. Differ. Equ. 2016 (2016) Article ID 136. doi:10.1186/s13662-016-0860-0
[7] H. Ohtsuka and S. Nakamura, On the sum of reciprocal Fibonacci numbers, Fibonacci Quart. 46/47 (2008/2009) 153–159.
[8] G.K. Panda, Some fascinating properties of balancing numbers, Congr. Numer. 194 (2009) 185–189.
[9] A.Y. Wang and P. Wen, On the partial finite sums of the reciprocals of the Fibonacci numbers, J. Inequal. Appl. 2015 (2015) Article ID 73. doi:10.1186/s13660-015-0595-6
[10] A.Y. Wang and T. Yuan, Alternating sums of the reciprocal Fibonacci numbers, J. Integer Seq. 20 (2017) Article ID 17.1.4.
[11] A.Y. Wang and W. Zhang, The reciprocal sums of even and odd terms in the Fibonacci sequence, J. Inequal. Appl. 2015 (2015) Article ID 376. doi:10.1186/s13660-015-0902-2
[12] A.Y. Wang and F. Zhang, The reciprocal sums of the Fibonacci 3 -subsequences, Adv. Differ. Equ. 2016 (2016) Article ID 27. doi:10.1186/s13662-016-0761-2
[13] W. Zhang and T. Wang, The infinite sum of reciprocal Pell numbers, Appl. Math. Comput. 218 (2012) 6164–6167. doi:10.1016/j.amc.2011.11.090