Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2020_40_2_a2, author = {Atteya, Mehsin Jabel}, title = {Commutativity with {Derivations} of {Semiprime} {Rings}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {165--175}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a2/} }
TY - JOUR AU - Atteya, Mehsin Jabel TI - Commutativity with Derivations of Semiprime Rings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2020 SP - 165 EP - 175 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a2/ LA - en ID - DMGAA_2020_40_2_a2 ER -
Atteya, Mehsin Jabel. Commutativity with Derivations of Semiprime Rings. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 165-175. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a2/
[1] M.A. Chaudhry and Allah-Bakhsh Thaheem, On a pair of (α, β) -derivation of semiprime rings, Aequation Math. 69 (2005) 224–230. doi:10.1007/s00010-004-2763-5
[2] H.E. Bell and W.S. Martindal III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 10 (1987) 92–101. doi:10.4153/CMB-1987-014-x
[3] M. Brešar, On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991) 80–93.
[4] M.N. Daif and H.E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. and Math. Sci. 15 (1992) 205–206. doi:10.1155/S0161171292000255
[5] M.N. Daif, Commutativity results for semiprime rings with derivations, Int. J. Math. and Math. Sci. 21 (1998) 471–474. doi:10.1155/S0161171298000660
[6] V. De Filippis, Automorphisms and derivations in prime rings, Rcndiconti di Mathematica, Serie VII, 19 (1999) 393–404.
[7] I.N. Herstein, Topics in Ring Theory (University of Chicago Press, Chicago, 1969).
[8] C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125 (1997) 339–345. doi:10.1090/S0002-9939-97-03673-3
[9] A.H. Majeed and Mehsin Jabel, Some results of prime and semiprime rings with derivations, Um-Salama Sci. J. 3 (2005) 508–516.
[10] Mehsin Jabel and A.H. Majeed, On derivations of semiprime rings, Antarctica J. Math. 4 (2007) 131–138.
[11] M.J. Atteya, On generalized derivations of semiprime rings, Int. J. Alg. 12 (2010) 591–598.
[12] A. Nakajima, On categorical properties of generalized derivations, Sci. Math. 2 (1999) 345–352.
[13] L. Oukhtite and S. Salhi, On derivations in σ-prime rings, Int. J. Alg. 1 (2007) 241–246. doi:10.12988/ija.2007.07025
[14] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991) 609–614.
[15] I.N. Herstein, Rings with Involution (University of Chicago Press, Chicago, Illinois, 1976).
[16] M. Brešar, Centralizing mappings and derivations in prime rings, J. Alg. 156 (1993) 385–394.
[17] X. Xu, Y. Liu and W. Zhang, Skew N-derivations on semiprime rings, Bull. Korean Math. Soc. 50 (2013) 1863–1871. doi:10.4134/BKMS.2013.50.6.1863
[18] P.M. Cohn, Further Algebra and Applications, 1st edition (Springer-Verlag, London, Berlin, Heidelberg, 2003). doi:10.1007/978-1-4471-0039-3
[19] I.N. Herstein, A commutativity theorem, J. Alg. 38 (1976) 112–118. doi:10.1016/0021-8693(76)90248-9
[20] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093–1100. doi:10.2307/2032686