β-Prime Spectrum of Stone Almost Distributive Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 311-326.

Voir la notice de l'article provenant de la source Library of Science

The notion of boosters and β-filters in stone Almost Distributive Lattices are introduced and their properties are studied, utilizing boosters to characterize the β-filters. It has been derived that every proper β-filter is the intersection of all prime β-filters containing it, and it has also been proved that the set ℱ_β(L) of all β-filters is isomorphic to the set of all ideals of ℬ_0(L). A set of equivalent conditions is derived for ℬ_0(L) to become a relatively complemented Almost Distributive Lattice. Later, some properties of the space of all prime β-filters are derived topologically. Finally, necessary and sufficient conditions are derived for the space of all prime β-filters to be a Hausdorff space.
Keywords: Almost Distributive Lattice (ADL), stone ADL, relatively complemented ADL, ideal, filter, booster, isomorphism, compact set, Hausdorff space, β-filters
@article{DMGAA_2020_40_2_a13,
     author = {Rafi, N. and Bandaru, Ravi Kumar},
     title = {\ensuremath{\beta}-Prime {Spectrum} of {Stone} {Almost} {Distributive} {Lattices}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {311--326},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a13/}
}
TY  - JOUR
AU  - Rafi, N.
AU  - Bandaru, Ravi Kumar
TI  - β-Prime Spectrum of Stone Almost Distributive Lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2020
SP  - 311
EP  - 326
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a13/
LA  - en
ID  - DMGAA_2020_40_2_a13
ER  - 
%0 Journal Article
%A Rafi, N.
%A Bandaru, Ravi Kumar
%T β-Prime Spectrum of Stone Almost Distributive Lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2020
%P 311-326
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a13/
%G en
%F DMGAA_2020_40_2_a13
Rafi, N.; Bandaru, Ravi Kumar. β-Prime Spectrum of Stone Almost Distributive Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 311-326. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a13/

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV (Providence, 1967).

[2] G. Gratzer, General Lattice Theory (Academic Press, New York, Sanfransisco, 1978).

[3] G.C. Rao, Almost Distributive Lattices, Doctoral Thesis (1980), Dept. of Mathematics, Andhra University, Visakhapatnam.

[4] G.C. Rao, N. Rafi and R.K. Bandaru, Closure operators in Almost Distributive Lattices, Int. Math. Forum 5 (19) (2010) 929–935.

[5] G.C. Rao, N. Rafi and B. Ravikumar, On the prime filters of normal almost distributive lattices, South. Asian Bull. Math. 35 (2011) 653–663.

[6] G.C. Rao, N. Rafi and B. Ravikumar, Topological characterization of dually normal almost distributive lattices, Asian Eur. J. Math. 5 (2012) 1250043. doi:10-1142/S17355711250043X

[7] G.C. Rao and S. Ravi Kumar, Minimal prime ideals in an ADL, Int. J. Contemp. Sci. 4 (2009) 475–484.

[8] M. Sambasiva Rao, β-filters of M S-algebras, Asian Eur. J. Math. 5 (2012) 1250023 (8 pages). doi:10.1142/s1793557112500234

[9] U.M. Swamy and G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. (Ser. A) 31 (1981) 77–91. doi:10.1017/s1446788700018498

[10] U.M. Swamy, G.C. Rao and G. Nanaji Rao, Pseudo-complementation on Almost Distributive Lattices, South. Asian Bull. Math. 24 (2000) 95–104. doi:10.1007/s10012-000-0095-5

[11] U.M. Swamy, G.C. Rao and G. Nanaji Rao, Stone Almost Distributive Lattices, South. Asian Bull. Math. 24 (2003) 513–526.