Completely Prime Hyperideals of Ternary Semihypergroups
Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 285-295.

Voir la notice de l'article provenant de la source Library of Science

In this article, we introduce the notions of pseudosymmetric hyperideals and globally idempotent ternary semihypergroups and present various examples for them. We prove that if a ternary semihypergroup is globally idempotent, then every maximal hyperideal is a prime hyperideal. Also we study some properties of prime, completely prime and pseudosymmetric hyperideals of a ternary semihypergroup and characterize them. The interrelation among them is considered in ternary semihypergroups.
Keywords: pseudosymmetric, globally idempotent, leftsimple ternary semi-hypergroup
@article{DMGAA_2020_40_2_a11,
     author = {Sarala, Y. and Seetha Mani, P. and Gulistan, M. and Jaya Lalitha, G.},
     title = {Completely {Prime} {Hyperideals} of {Ternary} {Semihypergroups}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {285--295},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a11/}
}
TY  - JOUR
AU  - Sarala, Y.
AU  - Seetha Mani, P.
AU  - Gulistan, M.
AU  - Jaya Lalitha, G.
TI  - Completely Prime Hyperideals of Ternary Semihypergroups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2020
SP  - 285
EP  - 295
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a11/
LA  - en
ID  - DMGAA_2020_40_2_a11
ER  - 
%0 Journal Article
%A Sarala, Y.
%A Seetha Mani, P.
%A Gulistan, M.
%A Jaya Lalitha, G.
%T Completely Prime Hyperideals of Ternary Semihypergroups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2020
%P 285-295
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a11/
%G en
%F DMGAA_2020_40_2_a11
Sarala, Y.; Seetha Mani, P.; Gulistan, M.; Jaya Lalitha, G. Completely Prime Hyperideals of Ternary Semihypergroups. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 285-295. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a11/

[1] A. Anjaneyulu, Structure and ideal theory of semigroups-thesis, 22 (1980). doi:10.1007/BF02572805

[2] A. Basar, Application of (m, n) -gamma hyperideals in charectorization of LA-gamma semihypergroups, Discuss. Math. General Alg. and Appl. 39 (2019) 135–147. doi:10.7151/dmgaa.1304

[3] A.H. Clifford and G.B. Preston, The algebraic theory of Semigroups, Amer. Math. Soc. Providence I (1961).

[4] A. Cayley, On the theory of linear transformations, Cambridge Math. J. 4 (1845) 193–209.

[5] P. Corsini and V. Leoreanu, Applications of hyperstructures and theory, Adv. Math. Kheswer Acad. Publisher, (2003). doi:10.1007/978-1-4757-3714-1

[6] B. Davvaz and V. Leoreanu, Hyperring Theory and Applications (Inter. Academ. Press, USA, 2007).

[7] B. Davvaz, W.A. Dudek and T. Vougiouklis, A generalisation of n-ary algebraic systems, Commun. Algebra 37 (2009) 1248–1263. doi:10.1080/00927870802466835

[8] B. Davvaz and V. Leoreanu, Binary relations on ternary semihypergroups, Commun. Algebra 38 (2010) 3621–3636. doi:10.1080/00927870903200935

[9] V.N. Dixit and S. Dawan, A note on quasi and biideals in ternary semigroups, Int. J. Math. Sci. 18 (1995) 501–508. doi:10.1155/S0161171295000640

[10] W. Dörnte, Untersuchungenüber einen verallgemeinerten Gruppenbegri, Math. Z. 29 (1929) 1–19. doi:10.1007/BF01180515

[11] W.A. Dudek, On divisibility in n-semigroups, Demonstratio Math. 13 (1980) 355–367.

[12] W.A. Dudek and I. Grozdzinska, On ideals in regular n-semigroups, Math. Bull. 3 (1980) 29–30.

[13] K. Hila, B. Davaaz and K. Naka, On hyperideals structure of ternary semihyper groups, Iranian. J. Math. Sci. Inform. 9 (2014) 81–98.

[14] M. Karpranov, L.M. Gelfand and A. Zelevinskili, Discriminant Resultants and Multidimensional Determinants (Birkhauser Berlin, 1994).

[15] R. Kerner, Ternary algebraic structures and their applications in physics, Universite Pierre-et-Marie-Curie, (1995), arXiv:math-ph/0011023.

[16] D. Lehmer, A ternary analogue of abelian groups, Amer. J. Math. Sci. 59 (1972) 329–338.

[17] F. Marty, Sur une generalisation de la notion de group, 8th Congress Math. Scandinaves, Stockholm, Sweden (1934) 45–49.

[18] K. Naka and K. Hila, Some properties of hyper ideals in ternary semihypergroup, Math. Slovaca 63 (2013) 449–468. doi:10.2478/s12175-013-0108-3

[19] K. Naka and K. Hila, Regularity of ternary semihypergroups, Quasigroups and Related Systems 25 (2017) 291–306.

[20] L. Nichefranca and K.P Shum, Pseudo symmetric ideals of semigroup and their radicals, Czech. Math. J. 48 (1998) 727–735. doi:10.1023/A:1022439706828

[21] D. Ramakotaiah and A. Anjaneyulu, On a class of semigroups, Simon Stevin 54 (1980) 241–249.

[22] F.M. Sioson, Ideal theory in ternary semigroups, Math. Japonica 10 (1965) 63–64.

[23] M. Shabir and Sk. Bashir, Prime ideals in ternary semigroups, Asian Eur. J. Math. 2 (2009) 141–154. doi:10.1142/S1793557109000121

[24] Y. Sarala, A. Anjaneyulu and D. Madhusudana Rao, Pseudo symmetric ideals in ternary semigroups, Internat. Ref. J. Eng. Sci. 1 (2012) 33–43.

[25] Y. Sarala, A. Anjaneyulu and D. Madhusudana Rao, Ideals in ternary semigroups, Internat. J. Math. Eng. 203 (2013) 1950–1968.

[26] T. Vougiouklis, Hyper structures and their representations (Hadronic Press Inc, Palm Harbor, USA, 1994).