Principal Intuitionistic Fuzzy Ideals and Filters on a Lattice
Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 75-88.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we generalize the notion of principal ideal (resp. filter) on a lattice to the setting of intuitionistic fuzzy sets and investigate their various characterizations and properties. More specifically, we show that any principal intuitionistic fuzzy ideal (resp. filter) coincides with an intuitionistic fuzzy down-set (resp. up-set) generated by an intuitionistic fuzzy singleton. Afterwards, for a given intuitionistic fuzzy set, we introduce two intuitionistic fuzzy sets: its intuitionistic fuzzy down-set and up-set, and we investigate their interesting properties.
Keywords: lattice, intuitionistic fuzzy set, principal intuitionistic fuzzy ideal, principal intuitionistic fuzzy filter
@article{DMGAA_2020_40_1_a6,
     author = {Boudaoud, Sarra and Zedam, Lemnaouar and Milles, Soheyb},
     title = {Principal {Intuitionistic} {Fuzzy} {Ideals} and {Filters} on a {Lattice}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {75--88},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a6/}
}
TY  - JOUR
AU  - Boudaoud, Sarra
AU  - Zedam, Lemnaouar
AU  - Milles, Soheyb
TI  - Principal Intuitionistic Fuzzy Ideals and Filters on a Lattice
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2020
SP  - 75
EP  - 88
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a6/
LA  - en
ID  - DMGAA_2020_40_1_a6
ER  - 
%0 Journal Article
%A Boudaoud, Sarra
%A Zedam, Lemnaouar
%A Milles, Soheyb
%T Principal Intuitionistic Fuzzy Ideals and Filters on a Lattice
%J Discussiones Mathematicae. General Algebra and Applications
%D 2020
%P 75-88
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a6/
%G en
%F DMGAA_2020_40_1_a6
Boudaoud, Sarra; Zedam, Lemnaouar; Milles, Soheyb. Principal Intuitionistic Fuzzy Ideals and Filters on a Lattice. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 75-88. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a6/

[1] M. Akram and W. Dudek, Interval-valued intuitionistic fuzzy Lie ideals of Lie algebras, World Appl. Sci. J. 7 (2009) 812–819.

[2] T. Anitha, (λ, µ)-Fuzzy ideals in ordered ternary semigroups, Malaya J. Mat. 2 (2015) 326–335.

[3] K. Atanassov, Intuitionistic fuzzy sets (VII ITKRs Scientific Session, Sofia, 1983).

[4] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96. doi:10.1016/S0165-0114(86)80034-3

[5] K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications (Springer-Verlag, Heidelberg, New York, 1999).

[6] K. Atanassov, On Intuitionistic Fuzzy Sets (Springer, Berlin, 2012). doi:10.1007/978-3-642-29127-2

[7] B. Banerjee and D.Kr. Basnet, Intuitionstic fuzzy sub rings and ideals, J. Fuzzy Math. 11 (2003) 139–155.

[8] S. Bashir and X. Du, On weakly regular fuzzy ordered ternary semigroups, Appl. Math. Inform. Sci. 10 (2016) 2247–2254. doi:10.18576/amis/100627

[9] G. Birkhoff, A new definition of limit, Bull. Amer. Math. Soc. 41 (1935) 667–670.

[10] R. Biswas, On fuzzy sets and intuitionistic fuzzy sets, Nots on Intuitionistic Fuzzy Sets 3 (1997) 3–11.

[11] Y. Bo and W. Wangming, Fuzzy Ideals on a distributive lattice, Fuzzy Sets and Systems 35 (1990) 231–240. doi:10.1016/0165-0114(90)90196-D

[12] N. Bourbaki, Topologie générale (Springer-Verlag, Berlin Heidelberg, 2007).

[13] R. Chinram and S. Sompob, Fuzzy ideals and fuzzy filters of ordered ternary semi-groups, J. Math. Research 2 (2010) 93–101. doi:10.5539/jmr.v2n1p93

[14] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order (Cambridge University Press, Cambridge, 2002).

[15] B. Davvaz and O. Kazanci, A new kind of fuzzy Sublattice (Ideal, Filter) of a lattice, Int. J. Fuzzy Syst. 13 (2011) 55–63.

[16] G. Grätzer, General Lattice Theory (Academic Press, New York, 1978).

[17] K.H. Kim and Y.B. Jun, Intuitionistic fuzzy interior ideals of semigroups, Int. J. Math. and Math. Sci. 27 (2001) 261–267. doi:10.1155/S0161171201010778

[18] Y. Liu, K. Qin and Y. Xu, Fuzzy prime filters of lattice implication algebras, Fuzzy Inform. and Eng. 3 (2011) 235–246. doi:10.1007/s12543-011-0080-y

[19] Y. Liu and M. Zheng, Characterizations of fuzzy ideals in coresiduated lattices, Adv. Math. Phys., (2016). doi:10.1155/2016/6423735

[20] Y. Liu, K. Qin and Y. Xu, Interval-valued intuitionistic (T, S) -fuzzy filters theory on residuated lattices, Int. J. Machine Learning and Cybernetics 5 (2014) 683–696. doi:10.1007/s13042-013-0213-1

[21] X. Ma, J. Zhan and W.A. Dudek, Some kinds of (∓ ∈, ∓ ∈ ∨ ∓ q)-fuzzy filters of BL-algebras, Comput. Math. Appl. 58 (2009) 248–256. doi:10.1016/j.camwa.2009.03.109

[22] I. Mezzomo, B.C. Bedregal and R.H.N. Santiago, Types of fuzzy ideals in fuzzy lattices, J. Int. Fuzzy Syst. 28 (2015) 929–945. doi:10.3233/IFS-141374

[23] S. Milles, L. Zedam and E. Rak, Characterizations of intuitionistic fuzzy ideals and filters based on lattice operations, J. Fuzzy Set Valued Anal. 2 (2017) 143–159. doi:10.5899/2017/jfsva-00399

[24] H. Prodinger, Congruences defined by languages and filters, Information and Control 44 (1980) 36–46. doi:10.1016/S0019-9958(80)90123-0

[25] Y. Qin and Y. Liu, Intuitionistic (T, S)-fuzzy filters on residuated lattices, General Math. Notes 16 (2013) 55–65.

[26] T.R. Rao, C.P. Rao, D. Solomon and D. Abeje, Fuzzy ideals and filters of lattices, Asian J. Current Engineering and Maths 2 (2013) 297–300.

[27] B.S. Schröder, Ordered Sets (Birkhauser, Boston, 2002).

[28] E. Szmidt, Distances and similarities in intuitionistic fuzzy sets (Springer International Publishing, Switzerland, 2014).

[29] K.V. Thomas and L.S. Nair, Quotient of ideals of an intuitionistic fuzzy lattices, Advances in Fuzzy System, (2010). doi:10.1155/2010/781672

[30] K.V. Thomas and L.S. Nair, Intuitionistic fuzzy sublattices and ideals, Fuzzy Inform. Eng. 3 (2011) 321–331. doi:10.1007/s12543-011-0086-5

[31] M. Tonga, Maximality on fuzzy filters of lattices, Afrika Mat. 22 (2011) 105–114. doi:10.1007/s13370-011-0009-y

[32] B. Van Gasse, G. Deschrijver, C. Cornelis and E. Kerre, Filters of residuated lattices and triangle algebras, Inform. Sci. 180 (2010) 3006–3020. doi:10.1016/j.ins.2010.04.010

[33] G.J. Wang and Y. Yutte, Intuitionistic fuzzy sets and L-fuzzy sets, Fuzzy Sets and Systems 110 (2000) 271–274. doi:10.1016/S0165-0114(98)00011-6

[34] S. Willard, General Topology (Addison-Wesley Publishing Company, Massachusetts, 1970).

[35] M. Wojciechowska-Rysiawa, IF-Filters of Pseudo-BL-Algebras, Discuss. Math. Gen. Alg. and Appl. 35 (2015) 177–193. doi:10.7151/dmgaa.1242

[36] J. Xu, Some properties of intuitionistic (T, S)-fuzzy filters on lattice implication algebras, Theor. Math. and Appl. 3 (2013) 79–89.

[37] R. Yager, Level sets and the representation theorem for intuitionistic fuzzy sets, Soft Computing 14 (2010) 1–7. doi:10.1007/s00500-008-0385-X

[38] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 331–352. doi:10.1016/S0019-9958(65)90241-X