Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2020_40_1_a6, author = {Boudaoud, Sarra and Zedam, Lemnaouar and Milles, Soheyb}, title = {Principal {Intuitionistic} {Fuzzy} {Ideals} and {Filters} on a {Lattice}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {75--88}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a6/} }
TY - JOUR AU - Boudaoud, Sarra AU - Zedam, Lemnaouar AU - Milles, Soheyb TI - Principal Intuitionistic Fuzzy Ideals and Filters on a Lattice JO - Discussiones Mathematicae. General Algebra and Applications PY - 2020 SP - 75 EP - 88 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a6/ LA - en ID - DMGAA_2020_40_1_a6 ER -
%0 Journal Article %A Boudaoud, Sarra %A Zedam, Lemnaouar %A Milles, Soheyb %T Principal Intuitionistic Fuzzy Ideals and Filters on a Lattice %J Discussiones Mathematicae. General Algebra and Applications %D 2020 %P 75-88 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a6/ %G en %F DMGAA_2020_40_1_a6
Boudaoud, Sarra; Zedam, Lemnaouar; Milles, Soheyb. Principal Intuitionistic Fuzzy Ideals and Filters on a Lattice. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 75-88. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a6/
[1] M. Akram and W. Dudek, Interval-valued intuitionistic fuzzy Lie ideals of Lie algebras, World Appl. Sci. J. 7 (2009) 812–819.
[2] T. Anitha, (λ, µ)-Fuzzy ideals in ordered ternary semigroups, Malaya J. Mat. 2 (2015) 326–335.
[3] K. Atanassov, Intuitionistic fuzzy sets (VII ITKRs Scientific Session, Sofia, 1983).
[4] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96. doi:10.1016/S0165-0114(86)80034-3
[5] K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications (Springer-Verlag, Heidelberg, New York, 1999).
[6] K. Atanassov, On Intuitionistic Fuzzy Sets (Springer, Berlin, 2012). doi:10.1007/978-3-642-29127-2
[7] B. Banerjee and D.Kr. Basnet, Intuitionstic fuzzy sub rings and ideals, J. Fuzzy Math. 11 (2003) 139–155.
[8] S. Bashir and X. Du, On weakly regular fuzzy ordered ternary semigroups, Appl. Math. Inform. Sci. 10 (2016) 2247–2254. doi:10.18576/amis/100627
[9] G. Birkhoff, A new definition of limit, Bull. Amer. Math. Soc. 41 (1935) 667–670.
[10] R. Biswas, On fuzzy sets and intuitionistic fuzzy sets, Nots on Intuitionistic Fuzzy Sets 3 (1997) 3–11.
[11] Y. Bo and W. Wangming, Fuzzy Ideals on a distributive lattice, Fuzzy Sets and Systems 35 (1990) 231–240. doi:10.1016/0165-0114(90)90196-D
[12] N. Bourbaki, Topologie générale (Springer-Verlag, Berlin Heidelberg, 2007).
[13] R. Chinram and S. Sompob, Fuzzy ideals and fuzzy filters of ordered ternary semi-groups, J. Math. Research 2 (2010) 93–101. doi:10.5539/jmr.v2n1p93
[14] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order (Cambridge University Press, Cambridge, 2002).
[15] B. Davvaz and O. Kazanci, A new kind of fuzzy Sublattice (Ideal, Filter) of a lattice, Int. J. Fuzzy Syst. 13 (2011) 55–63.
[16] G. Grätzer, General Lattice Theory (Academic Press, New York, 1978).
[17] K.H. Kim and Y.B. Jun, Intuitionistic fuzzy interior ideals of semigroups, Int. J. Math. and Math. Sci. 27 (2001) 261–267. doi:10.1155/S0161171201010778
[18] Y. Liu, K. Qin and Y. Xu, Fuzzy prime filters of lattice implication algebras, Fuzzy Inform. and Eng. 3 (2011) 235–246. doi:10.1007/s12543-011-0080-y
[19] Y. Liu and M. Zheng, Characterizations of fuzzy ideals in coresiduated lattices, Adv. Math. Phys., (2016). doi:10.1155/2016/6423735
[20] Y. Liu, K. Qin and Y. Xu, Interval-valued intuitionistic (T, S) -fuzzy filters theory on residuated lattices, Int. J. Machine Learning and Cybernetics 5 (2014) 683–696. doi:10.1007/s13042-013-0213-1
[21] X. Ma, J. Zhan and W.A. Dudek, Some kinds of (∓ ∈, ∓ ∈ ∨ ∓ q)-fuzzy filters of BL-algebras, Comput. Math. Appl. 58 (2009) 248–256. doi:10.1016/j.camwa.2009.03.109
[22] I. Mezzomo, B.C. Bedregal and R.H.N. Santiago, Types of fuzzy ideals in fuzzy lattices, J. Int. Fuzzy Syst. 28 (2015) 929–945. doi:10.3233/IFS-141374
[23] S. Milles, L. Zedam and E. Rak, Characterizations of intuitionistic fuzzy ideals and filters based on lattice operations, J. Fuzzy Set Valued Anal. 2 (2017) 143–159. doi:10.5899/2017/jfsva-00399
[24] H. Prodinger, Congruences defined by languages and filters, Information and Control 44 (1980) 36–46. doi:10.1016/S0019-9958(80)90123-0
[25] Y. Qin and Y. Liu, Intuitionistic (T, S)-fuzzy filters on residuated lattices, General Math. Notes 16 (2013) 55–65.
[26] T.R. Rao, C.P. Rao, D. Solomon and D. Abeje, Fuzzy ideals and filters of lattices, Asian J. Current Engineering and Maths 2 (2013) 297–300.
[27] B.S. Schröder, Ordered Sets (Birkhauser, Boston, 2002).
[28] E. Szmidt, Distances and similarities in intuitionistic fuzzy sets (Springer International Publishing, Switzerland, 2014).
[29] K.V. Thomas and L.S. Nair, Quotient of ideals of an intuitionistic fuzzy lattices, Advances in Fuzzy System, (2010). doi:10.1155/2010/781672
[30] K.V. Thomas and L.S. Nair, Intuitionistic fuzzy sublattices and ideals, Fuzzy Inform. Eng. 3 (2011) 321–331. doi:10.1007/s12543-011-0086-5
[31] M. Tonga, Maximality on fuzzy filters of lattices, Afrika Mat. 22 (2011) 105–114. doi:10.1007/s13370-011-0009-y
[32] B. Van Gasse, G. Deschrijver, C. Cornelis and E. Kerre, Filters of residuated lattices and triangle algebras, Inform. Sci. 180 (2010) 3006–3020. doi:10.1016/j.ins.2010.04.010
[33] G.J. Wang and Y. Yutte, Intuitionistic fuzzy sets and L-fuzzy sets, Fuzzy Sets and Systems 110 (2000) 271–274. doi:10.1016/S0165-0114(98)00011-6
[34] S. Willard, General Topology (Addison-Wesley Publishing Company, Massachusetts, 1970).
[35] M. Wojciechowska-Rysiawa, IF-Filters of Pseudo-BL-Algebras, Discuss. Math. Gen. Alg. and Appl. 35 (2015) 177–193. doi:10.7151/dmgaa.1242
[36] J. Xu, Some properties of intuitionistic (T, S)-fuzzy filters on lattice implication algebras, Theor. Math. and Appl. 3 (2013) 79–89.
[37] R. Yager, Level sets and the representation theorem for intuitionistic fuzzy sets, Soft Computing 14 (2010) 1–7. doi:10.1007/s00500-008-0385-X
[38] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 331–352. doi:10.1016/S0019-9958(65)90241-X