Characterizations of Weakly Ordered k-Regular Hemirings by k-Ideals
Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 289-301.

Voir la notice de l'article provenant de la source Library of Science

We study the concepts of left weakly ordered k-regular and right weakly ordered k-regular hemirings and give some of their characterizations using many types of their k-ideals.
Keywords: ordered hemiring, k-ideal, ordered k-regular hemiring, weakly ordered k-regular hemiring
@article{DMGAA_2019_39_2_a9,
     author = {Pibaljommee, Bundit and Palakawong na Ayutthaya, Pakorn},
     title = {Characterizations of {Weakly} {Ordered} {k-Regular} {Hemirings} by {k-Ideals}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {289--301},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a9/}
}
TY  - JOUR
AU  - Pibaljommee, Bundit
AU  - Palakawong na Ayutthaya, Pakorn
TI  - Characterizations of Weakly Ordered k-Regular Hemirings by k-Ideals
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2019
SP  - 289
EP  - 301
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a9/
LA  - en
ID  - DMGAA_2019_39_2_a9
ER  - 
%0 Journal Article
%A Pibaljommee, Bundit
%A Palakawong na Ayutthaya, Pakorn
%T Characterizations of Weakly Ordered k-Regular Hemirings by k-Ideals
%J Discussiones Mathematicae. General Algebra and Applications
%D 2019
%P 289-301
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a9/
%G en
%F DMGAA_2019_39_2_a9
Pibaljommee, Bundit; Palakawong na Ayutthaya, Pakorn. Characterizations of Weakly Ordered k-Regular Hemirings by k-Ideals. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 289-301. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a9/

[1] M.R. Adhikari, M.K. Sen and H.J. Weinert, On k-regular semirings, Bull. Calcutta Math. Soc. 88 (1996) 141–144.

[2] J. Ahsan and M. Takahashi, Pure spectrum of a monoid with zero, Kobe J. Math. 6 (1989) 163–182.

[3] S. Bourne, The Jacobson radical of a semiring, Proc. Nati. Acad. Sci. USA 31 (1951) 163–170. doi:10.1073/pnas.37.3.163

[4] A.P. Gan and Y.L. Jiang, On ordered ideals in ordered semirings, J. Math. Res. Exposition 31 (2011) 989–996. doi:10.3770/j.issn:1000-341X.2011.06.004

[5] R.D. Jagatap, Right k-weakly regular-semirings, Algebra 2014 (2014) 948032. doi:10.1155/2014/948032

[6] D. Mandal, Fuzzy ideals and fuzzy interior ideals in ordered semirings, JFuzzy Inf. Eng. 6 (2014) 101–114. doi:10.1016/j.fiae.2014.06.008

[7] J. von Neumann, On regular rings, Proc. Natl. Acad. Sci. USA 22 (1936) 707–713. doi:10.1073/pnas.22.12.707

[8] P. Palakawong na Ayuthaya and B. Pibaljommee, Characterizations of ordered k-regular semirings by ordered quasi k-ideals, Quasigroups Related Systems 25 (2017) 109–120.

[9] P. Palakawong na Ayuthaya and B. Pibaljommee, Characterizations of ordered intra k-regular semirings by ordered k-ideals, Commun. Korean Math. Soc. 33 (2018) 1–12. doi:10.4134/CKMS.c160271

[10] P. Palakawong na Ayuthaya and B. Pibaljommee, Characterizations of completely ordered k-regular semirings, Songklanakarin J. Sci. Technol. 41 (2019) 501–505.

[11] S. Patchakhieo and B. Pibaljommee, Characterizations of ordered k-regular semirings by ordered k-ideals, Asian-Eur. J. Math. 10 (2017) 1750020. doi:10.1142/s1793557117500206

[12] P. Senarat and B. Pibaljommee, Prime ordered k-bi-ideals in ordered semirings, Quasigroups Related Systems 25 (2017) 121–132.