An Injective Pseudo-BCI Algebra is Trivial
Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 221-229.

Voir la notice de l'article provenant de la source Library of Science

Injective pseudo-BCI algebras are studied. There is shown that the only injective pseudo-BCI algebra is the trivial one.
Keywords: pseudo-BCI algebra, injective pseudo-BCI algebra
@article{DMGAA_2019_39_2_a4,
     author = {Dymek, Grzegorz},
     title = {An {Injective} {Pseudo-BCI} {Algebra} is {Trivial}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {221--229},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a4/}
}
TY  - JOUR
AU  - Dymek, Grzegorz
TI  - An Injective Pseudo-BCI Algebra is Trivial
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2019
SP  - 221
EP  - 229
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a4/
LA  - en
ID  - DMGAA_2019_39_2_a4
ER  - 
%0 Journal Article
%A Dymek, Grzegorz
%T An Injective Pseudo-BCI Algebra is Trivial
%J Discussiones Mathematicae. General Algebra and Applications
%D 2019
%P 221-229
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a4/
%G en
%F DMGAA_2019_39_2_a4
Dymek, Grzegorz. An Injective Pseudo-BCI Algebra is Trivial. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 221-229. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a4/

[1] D. Buşneag, Categories of algebraic logic, Editura Academiei Romane, Bucharest, 2006.

[2] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008) 187–190.

[3] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012) 461–474.

[4] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012) 73–90.

[5] G. Dymek, On the category of pseudo-BCI-algebras, Demonstratio Math. 46 (2013) 631-644.

[6] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014) 167–187.

[7] S. Eilenberg and J.C. Moore, Foundations of relative homological algebra, Mem. Amer. Math. Soc., Vol. 55, 1965.

[8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, Bucharest, Romania, May (1999), 961–968.

[9] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000, Slovakia, February 2000, 90–92.

[10] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS’01: Combinatorics, Computability and Logic, Springer, London, 2001, 97–114.

[11] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966) 19–22. doi:10.3792/pja/1195522169

[12] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26–29. doi:10.3792/pja/1195522171