On the Genus of the Co-Annihilating Graph of Commutative Rings
Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 203-220

Voir la notice de l'article provenant de la source Library of Science

Let R be a commutative ring with identity and 𝔘_R be the set of all nonzero non-units of R. The co-annihilating graph of R, denoted by 𝒞𝒜_R, is a graph with vertex set 𝔘_R and two vertices x and y are adjacent whenever ann(x) ∩ ann(y) = (0). In this paper, we characterize all commutative Artinian non-local rings R for which the 𝒞𝒜_R has genus one and two. Also we characterize all commutative Artinian non-local rings R for which 𝒞𝒜_R has crosscap one. Finally, we characterize all finite commutative non-local rings for which g(Г_2(R)) = g(𝒞𝒜_R) = 0 or 1.
Keywords: co-annihilating graph, planar graph, genus, crosscap
@article{DMGAA_2019_39_2_a3,
     author = {Selvakumar, K. and Karthik, S.},
     title = {On the {Genus} of the {Co-Annihilating} {Graph} of {Commutative} {Rings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {203--220},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a3/}
}
TY  - JOUR
AU  - Selvakumar, K.
AU  - Karthik, S.
TI  - On the Genus of the Co-Annihilating Graph of Commutative Rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2019
SP  - 203
EP  - 220
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a3/
LA  - en
ID  - DMGAA_2019_39_2_a3
ER  - 
%0 Journal Article
%A Selvakumar, K.
%A Karthik, S.
%T On the Genus of the Co-Annihilating Graph of Commutative Rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2019
%P 203-220
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a3/
%G en
%F DMGAA_2019_39_2_a3
Selvakumar, K.; Karthik, S. On the Genus of the Co-Annihilating Graph of Commutative Rings. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 203-220. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a3/