L-Fuzzy Ideals of Residuated Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 181-201.

Voir la notice de l'article provenant de la source Library of Science

This paper mainly focuses on building the ℒ-fuzzy ideals theory of residuated lattices. Firstly, we introduce the notion of ℒ-fuzzy ideals of a residuated lattice and obtain their properties and equivalent characterizations. Also, we introduce the notion of prime fuzzy ideal, fuzzy prime ideal and fuzzy prime ideal of the second kind of a residuated lattice and establish existing relationships between these types of fuzzy ideals. Finally, we investigate the notions of fuzzy maximal ideal and maximal fuzzy ideal of a residuated lattice and present some characterizations.
Keywords: fuzzy ideal, fuzzy prime ideal, prime fuzzy ideal, fuzzy maximal ideal and maximal fuzzy ideal
@article{DMGAA_2019_39_2_a2,
     author = {Kengne, Pierre Carole and Koguep, Blaise Bl\'eriot and Akume, Daniel and Lele, Celestin},
     title = {L-Fuzzy {Ideals} of {Residuated} {Lattices}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {181--201},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a2/}
}
TY  - JOUR
AU  - Kengne, Pierre Carole
AU  - Koguep, Blaise Blériot
AU  - Akume, Daniel
AU  - Lele, Celestin
TI  - L-Fuzzy Ideals of Residuated Lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2019
SP  - 181
EP  - 201
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a2/
LA  - en
ID  - DMGAA_2019_39_2_a2
ER  - 
%0 Journal Article
%A Kengne, Pierre Carole
%A Koguep, Blaise Blériot
%A Akume, Daniel
%A Lele, Celestin
%T L-Fuzzy Ideals of Residuated Lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2019
%P 181-201
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a2/
%G en
%F DMGAA_2019_39_2_a2
Kengne, Pierre Carole; Koguep, Blaise Blériot; Akume, Daniel; Lele, Celestin. L-Fuzzy Ideals of Residuated Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 181-201. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a2/

[1] M. Attallah, Completely fuzzy prime ideals of distributive lattices, J. Fuzzy Math. 8 (2000) 153–156.

[2] R.P. Dilworth and M. Ward, Residuated lattices, Trans. Am. Math. Soc. 45 (1939) 161–354.

[3] J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967) 145–174. doi:10.1016/0022-247X(67)90189-8

[4] C.S. Hoo, Fuzzy Ideals in BCI and MV-algebras, Fuzzy Sets and Syst. 62 (1994) 111–114. doi:10.1016/0165-0114(94)90078-7

[5] A. Kadji, M. Tonga and C. Lele, Fuzzy prime and maximal filters of residuated lattices, Soft Comput. (2017) 239–253.

[6] B.B.N. Koguep, C. Nkuimi and C. Lele, On fuzzy ideals of hyperlattice, Internat. J. Algebra 2 (2008) 739–750.

[7] B.B.N. Koguep, C. Nkuimi and C. Lele, On fuzzy prime ideals of lattice, SAMSA J. Pure and Appl. Math. 3 (2008) 1–11.

[8] Y. Liu, Y. Qin, X. Qin and Y. Xu, Ideals and fuzzy ideals on residuated lattices, Int. J. Machine Learning and Cybernetic 8 (2017) 239–253. doi:10.1007/s13042-014-0317-2

[9] C. Lele and J.B. Nganou, Pseudo-addition and fuzzy ideals in BL-algebas, Ann. Fuzzy Math. and Inform. 8 (2014) 193–207.

[10] D.S. Malik and J.N. Moderson, Fuzzy maximal, radical and primary ideals of a ring, Inform. Sci. 53 (1991) 237–250. doi:10.1016/0020-0255(91)90038-V

[11] D.W. Pei, The characterization of residuated lattices and regular residuated lattices, Acta Math. Sinica 42 (2002) 271–278.

[12] U.M. Swamy and D.V. Raju, Fuzzy ideals and congruences of lattices, Fuzzy Sets and Systems 95 (1998) 249–253. doi:10.1016/S0165-0114(96)00310-7

[13] U.M. Swamy and K.L.N. Swamy, Fuzzy prime ideals of rings, J. Math. Anal. Appl. 134 (1988) 94–103. doi:10.1016/0022-247X(88)90009-1

[14] M. Tonga, Maximality on fuzzy filters of lattice, Afrika Math. 22 (2011) 105–114. doi:10.1007/s13370-011-0009-y

[15] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338–353. doi:10.1016/S0019-9958(65)90241-X