Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2019_39_2_a2, author = {Kengne, Pierre Carole and Koguep, Blaise Bl\'eriot and Akume, Daniel and Lele, Celestin}, title = {L-Fuzzy {Ideals} of {Residuated} {Lattices}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {181--201}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a2/} }
TY - JOUR AU - Kengne, Pierre Carole AU - Koguep, Blaise Blériot AU - Akume, Daniel AU - Lele, Celestin TI - L-Fuzzy Ideals of Residuated Lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2019 SP - 181 EP - 201 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a2/ LA - en ID - DMGAA_2019_39_2_a2 ER -
%0 Journal Article %A Kengne, Pierre Carole %A Koguep, Blaise Blériot %A Akume, Daniel %A Lele, Celestin %T L-Fuzzy Ideals of Residuated Lattices %J Discussiones Mathematicae. General Algebra and Applications %D 2019 %P 181-201 %V 39 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a2/ %G en %F DMGAA_2019_39_2_a2
Kengne, Pierre Carole; Koguep, Blaise Blériot; Akume, Daniel; Lele, Celestin. L-Fuzzy Ideals of Residuated Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 181-201. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a2/
[1] M. Attallah, Completely fuzzy prime ideals of distributive lattices, J. Fuzzy Math. 8 (2000) 153–156.
[2] R.P. Dilworth and M. Ward, Residuated lattices, Trans. Am. Math. Soc. 45 (1939) 161–354.
[3] J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967) 145–174. doi:10.1016/0022-247X(67)90189-8
[4] C.S. Hoo, Fuzzy Ideals in BCI and MV-algebras, Fuzzy Sets and Syst. 62 (1994) 111–114. doi:10.1016/0165-0114(94)90078-7
[5] A. Kadji, M. Tonga and C. Lele, Fuzzy prime and maximal filters of residuated lattices, Soft Comput. (2017) 239–253.
[6] B.B.N. Koguep, C. Nkuimi and C. Lele, On fuzzy ideals of hyperlattice, Internat. J. Algebra 2 (2008) 739–750.
[7] B.B.N. Koguep, C. Nkuimi and C. Lele, On fuzzy prime ideals of lattice, SAMSA J. Pure and Appl. Math. 3 (2008) 1–11.
[8] Y. Liu, Y. Qin, X. Qin and Y. Xu, Ideals and fuzzy ideals on residuated lattices, Int. J. Machine Learning and Cybernetic 8 (2017) 239–253. doi:10.1007/s13042-014-0317-2
[9] C. Lele and J.B. Nganou, Pseudo-addition and fuzzy ideals in BL-algebas, Ann. Fuzzy Math. and Inform. 8 (2014) 193–207.
[10] D.S. Malik and J.N. Moderson, Fuzzy maximal, radical and primary ideals of a ring, Inform. Sci. 53 (1991) 237–250. doi:10.1016/0020-0255(91)90038-V
[11] D.W. Pei, The characterization of residuated lattices and regular residuated lattices, Acta Math. Sinica 42 (2002) 271–278.
[12] U.M. Swamy and D.V. Raju, Fuzzy ideals and congruences of lattices, Fuzzy Sets and Systems 95 (1998) 249–253. doi:10.1016/S0165-0114(96)00310-7
[13] U.M. Swamy and K.L.N. Swamy, Fuzzy prime ideals of rings, J. Math. Anal. Appl. 134 (1988) 94–103. doi:10.1016/0022-247X(88)90009-1
[14] M. Tonga, Maximality on fuzzy filters of lattice, Afrika Math. 22 (2011) 105–114. doi:10.1007/s13370-011-0009-y
[15] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338–353. doi:10.1016/S0019-9958(65)90241-X