Monoids of ND-Full Hypersubstitutions
Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 165-179.

Voir la notice de l'article provenant de la source Library of Science

An nd-full hypersubstitution maps any operation symbols to the set of full terms of type τn. Nd-full hypersubstitutions can be extended to mappings which map sets of full terms to sets of full terms. The aims of this paper are to show that the extension of an nd-full hypersubstitution is an endomorphism of some clone and that the set of all nd-full hypersubstitutions forms a monoid.
Keywords: superposition of sets of terms, clone, hypersubstitution
@article{DMGAA_2019_39_2_a1,
     author = {Lekkoksung, Somsak},
     title = {Monoids of {ND-Full} {Hypersubstitutions}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {165--179},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a1/}
}
TY  - JOUR
AU  - Lekkoksung, Somsak
TI  - Monoids of ND-Full Hypersubstitutions
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2019
SP  - 165
EP  - 179
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a1/
LA  - en
ID  - DMGAA_2019_39_2_a1
ER  - 
%0 Journal Article
%A Lekkoksung, Somsak
%T Monoids of ND-Full Hypersubstitutions
%J Discussiones Mathematicae. General Algebra and Applications
%D 2019
%P 165-179
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a1/
%G en
%F DMGAA_2019_39_2_a1
Lekkoksung, Somsak. Monoids of ND-Full Hypersubstitutions. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 165-179. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a1/

[1] Th. Changphas and K. Denecke, Full hypersubstitutions and full solid varieties of semigroups, East-West J. Math. 4 (2002) 177–193.

[2] K. Denecke, J. Koppitz and SI. Shtrakov, The depth of a hypersubstitution, J. Automata, Languages and Combin. 6, 3 (2001) 253–262.

[3] K. Denecke and P. Jampachon, Clones of full terms, Algebra Discrete Math. 4 (2004) 1–11.

[4] K. Denecke, P. Glubudom and J. Koppitz, Power clones and non-deterministic hypersubstitutions, Asian-European J. Math. 1, 2 (2008) 177–188. doi:10.1142/S1793557108000175

[5] E. Graczyńska and D. Schweigert, Hypervarieties of a given type, Algebra Universalis 27 (1990) 305–318. doi:10.1007/BF01190711