Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2019_39_1_a5, author = {Zedam, Lemnaouar and Yettou, Mourad and Amroune, Abdelaziz}, title = {f-Fixed {Points} of {Isotone} {f-Derivations} on a {Lattice}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {69--89}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a5/} }
TY - JOUR AU - Zedam, Lemnaouar AU - Yettou, Mourad AU - Amroune, Abdelaziz TI - f-Fixed Points of Isotone f-Derivations on a Lattice JO - Discussiones Mathematicae. General Algebra and Applications PY - 2019 SP - 69 EP - 89 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a5/ LA - en ID - DMGAA_2019_39_1_a5 ER -
%0 Journal Article %A Zedam, Lemnaouar %A Yettou, Mourad %A Amroune, Abdelaziz %T f-Fixed Points of Isotone f-Derivations on a Lattice %J Discussiones Mathematicae. General Algebra and Applications %D 2019 %P 69-89 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a5/ %G en %F DMGAA_2019_39_1_a5
Zedam, Lemnaouar; Yettou, Mourad; Amroune, Abdelaziz. f-Fixed Points of Isotone f-Derivations on a Lattice. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 1, pp. 69-89. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a5/
[1] M. Ashraf, S. Ali and C. Haetinger, On derivations in rings and their applications, Aligarh Bull. Math. 25 (2006) 79–107.
[2] G. Birkhoff, Lattice Theory, 3rd edition, Amer. Math. Soc. (Providence, RI, 1967).
[3] Y. Çeven and M. Öztürk, On f-derivations of lattices, Bull. Korean Math. Soc. 45 (2008) 701–707.
[4] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, 2nd edition (Cambridge University Press, 2002).
[5] L. Ferrari, On derivations of lattices, Pure Math. and Appl. 12 (2001) 365–382.
[6] P. He, X. Xin and J. Zhan, On derivations and their fixed point sets in residuated lattices, Fuzzy Sets and Systems 303 (2016) 97–113. doi:10.1016/j.fss.2016.01.006
[7] K.H. Kim and B. Davvaz, On f-derivations of BE-algebras, J. Chungcheong Math. Soc. 28 (2015) 127–138. doi:10.14403/jcms.2015.28.1.127
[8] B. Kolman, R.C. Busby and S.C. Ross, Discrete Mathematical Structures, 4th edition (Prentice Hall PTR, 2000).
[9] S.M. Lee and K.H. Kim, A note on f-derivations of BCC-algebras, Pure Math. Sci. 1 (2012) 87–93.
[10] Ş.A. Özbal and A. Firat, On f-derivations of incline algebras, Int. Electronic J. Pure and Appl. Math. 3 (2011) 83–90.
[11] M.S. Rao, Congruences and ideals in a distributive lattice with respect to a derivation, Bulletin of the Section of Logic 42 (2013) 1–10.
[12] G.C. Rao and K.R. Babu, The theory of derivations in almost distributive lattice, Bulletin of the International Mathematical Virtual Institute 7 (2017) 203–216.
[13] S. Roman, Lattices and Ordered Sets (Springer Science+Business Media, New York, 2008).
[14] B.S. Schröder, Ordered Sets (Birkhauser, Boston, 2003).
[15] G. Szász, Translationen der verbände, Acta Fac. Rer. Nat. Univ. Comenianae 5 (1961) 53–57.
[16] G. Szász, Derivations of lattices, Acta Sci. Math. 37 (1975) 149–154.
[17] J. Wang, Y. Jun, X.L. Xin, T.Y. Li and Y. Zou, On derivations of bounded hyperlattices, J. Math. Res. Appl. 36 (2016) 151–161. doi:10.3770/j.issn:2095-2651.2016.02.003
[18] Q. Xiao and W. Liu, On derivations of quantales, Open Mathematics 14 (2016) 338–346. doi:10.1515/math-2016-0030
[19] X.L. Xin, T.Y. Li and J.H. Lu, On derivations of lattices, Information Sciences 178 (2008) 307–316. doi:10.1016/j.ins.2007.08.018
[20] X.L. Xin, The fixed set of a derivation in lattices, Fixed Point Theory and Applications 218 (2012) 1–12. doi:10.1186/1687-1812-2012-218
[21] Y.H. Yon and K.H. Kim, On f-derivations from semilattices to lattices, Commun. Korean Math. Soc. 29 (2014) 27–36. doi:10.4134/CKMS.2014.29.1.027