The Planar Index and Outerplanar Index of Some Graphs Associated to Commutative Rings
Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 1, pp. 55-68.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we study the planar and outerplanar indices of some graphs associated to a commutative ring. We give a full characterization of these graphs with respect to their planar and outerplanar indices when R is a finite ring.
Keywords: Jacobson graph, commutative ring, planar index, outerplanar index
@article{DMGAA_2019_39_1_a4,
     author = {Barati, Zahra and Afkhami, Mojgan},
     title = {The {Planar} {Index} and {Outerplanar} {Index} of {Some} {Graphs} {Associated} to {Commutative} {Rings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {55--68},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a4/}
}
TY  - JOUR
AU  - Barati, Zahra
AU  - Afkhami, Mojgan
TI  - The Planar Index and Outerplanar Index of Some Graphs Associated to Commutative Rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2019
SP  - 55
EP  - 68
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a4/
LA  - en
ID  - DMGAA_2019_39_1_a4
ER  - 
%0 Journal Article
%A Barati, Zahra
%A Afkhami, Mojgan
%T The Planar Index and Outerplanar Index of Some Graphs Associated to Commutative Rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2019
%P 55-68
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a4/
%G en
%F DMGAA_2019_39_1_a4
Barati, Zahra; Afkhami, Mojgan. The Planar Index and Outerplanar Index of Some Graphs Associated to Commutative Rings. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 1, pp. 55-68. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a4/

[1] M. Afkhami, When the comaximal and zero-divisor graphs are ring graphs and outerplanar, Rocky Mountain J. Math. 6 (2014) 1745–1761. doi:10.1216/RMJ-2014-44-6-1745

[2] M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35 (2011) 753–762.

[3] M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings and their complements, Bull. Malays. Math. Sci. Soc. 35 (2012) 935–944.

[4] M. Afkhami and K. Khashyarmanesh, Planar, outerplanar, and ring graph of the cozero-divisor graph of a finite commutative ring, J. Algebra and its Appl. 11 (2012) 1250103–1250112. doi:10.1142/S0219498812501034

[5] M. Afkhami, M. Farrokhi D.G. and K. Khashyarmanesh, Planar, outerplanar and ring graph cozero-divisor graphs, Ars Combin. 131 (2017) 397–406.

[6] M. Afkhami, K. Khashyarmanesh and Kh. Nafar, Generalized Cayley graphs associated to commutative rings, Linear Algebra Appl. 437 (2012) 1040–1049. doi:10.1016/j.laa.2012.03.017

[7] S. Akbari, H.R. Maimani and S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, J. Algebra 270 (2003) 169–180. doi:10.1016/S0021-8693(03)00370-3

[8] A. Alilou, J. Amjadi and S.M. Sheikholeslami, A new graph associated to a commutative ring, Discrete Math. Algorithm. Appl. 8 (2016) 1650029–16500041. doi:abs/10.1142/S1793830916500294

[9] D.D. Anderson and M. Naseer, Beck’s coloring of a commutative ring, J. Algebra 159 (1993) 500–514. doi:10.1006/jabr.1993.1171

[10] D.F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008) 3073–3092. doi:10.1080/00927870802110888

[11] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434–447. doi:10.1006/jabr.1998.7840

[12] A. Azimi, A. Erfanian and M. Farrokhi D.G., The Jacobson graph of commutative rings, J. Algebra Appl. 12 (2013) 1250179–1250197. doi:10.1142/S0219498812501794

[13] I. Beck, Coloring of commutative rings, J. Algebra 116 (1998) 208–226. doi:10.1016/0021-8693(88)90202-5

[14] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, 1976).

[15] M. Ghebleh and M. Khatirinejad, Planarity of iterated line graphs, Discrete Math. 308 (2008) 144–147. doi:10.1016/j.disc.2007.04.003

[16] H. Lin, W. Yangb, H. Zhanga and J. Shua, Outerplanarity of line graphs and iterated line graphs, Appl. Math. Lett. 24 (2011) 1214–1217. doi:10.1016/j.aml.2011.02.011

[17] A.V. Kelarev, Directed graphs and nilpotent rings, J. Austral. Math. Soc. 65 (1998) 326–332. doi:10.1017/S1446788700035916

[18] A.V. Kelarev, On undirected Cayley graphs, Australasian J. Combinatorics 25 (2002) 73–78.

[19] A.V. Kelarev, Ring Constructions and Applications (World Scientific, River Edge, NJ, 2002).

[20] A.V. Kelarev, Labelled Cayley graphs and minimal automata, Australasian J. Combinatorics 30 (2004) 95–101.

[21] A.V. Kelarev, On Cayley graphs of inverse semigroups, Semigroup Forum 72 (2006) 411–418. doi:10.1007/s00233-005-0526-9

[22] A.V. Kelarev and C.E. Praeger, On transitive Cayley graphs of groups and semigroups, European J. Combinatorics 24 (2003) 59–72. doi:10.1016/S0195-6698(02)00120-8

[23] A.V. Kelarev and S.J. Quinn, A combinatorial property and power graphs of groups, Contrib. General Algebra 12 (2000) 229–235.

[24] A.V. Kelarev and S.J. Quinn, Directed graphs and combinatorial properties of semigroups, J. Algebra 251 (2002) 16–26. doi:10.1006/jabr.2001.9128

[25] A.V. Kelarev, J. Ryan and J. Yearwood, Cayley graphs as classifiers for data mining: the influence of asymmetries, Discrete Math. 309 (2009) 5360–5369. doi:10.1016/j.disc.2008.11.030

[26] J. Sedláćek, Some properties of interchange graphs, in: Theory of Graphs and its Applications (Proceedings of the Symposium, Smolenice,1963), Publishing House of the Czechoslovak Academy of Sciences (Prague, 1964) 145–150.