Introducing Fully Up-Semigroups
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 297-306.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we introduce some new classes of algebras related to UP-algebras and semigroups, called a left UP-semigroup, a right UP-semigroup, a fully UP-semigroup, a left-left UP-semigroup, a right-left UP-semigroup, a left-right UP-semigroup, a right-right UP-semigroup, a fully-left UP-semigroup, a fully-right UP-semigroup, a left-fully UP-semigroup, a right-fully UP-semigroup, a fully-fully UP-semigroup, and find their examples.
Keywords: semigroup, UP-algebra, fully UP-semigroup
@article{DMGAA_2018_38_2_a9,
     author = {Iampan, Aiyared},
     title = {Introducing {Fully} {Up-Semigroups}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {297--306},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a9/}
}
TY  - JOUR
AU  - Iampan, Aiyared
TI  - Introducing Fully Up-Semigroups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 297
EP  - 306
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a9/
LA  - en
ID  - DMGAA_2018_38_2_a9
ER  - 
%0 Journal Article
%A Iampan, Aiyared
%T Introducing Fully Up-Semigroups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 297-306
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a9/
%G en
%F DMGAA_2018_38_2_a9
Iampan, Aiyared. Introducing Fully Up-Semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 297-306. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a9/

[1] S.S. Ahn and Y.H. Kim, On BE-semigroups, Int. J. Math. Math. Sci. (2011) Article ID 676020, 2011. doi:10.1155/2011/676020

[2] J.C. Endam and J.P. Vilela, On JB-semigroups, Appl. Math. Sci. 9 (2015) 2901–2911. doi:10.12988/ams.2015.46427

[3] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top. 5 (2017) 35–54. doi:10.22124/JART.2017.2403

[4] Y.B. Jun, S.M. Hong and E.H. Roh, BCI-semigroups, Honam Math. J. 15 (1993) 59–64.

[5] Y.B. Jun, E.H. Roh and X.L. Xin, I-ideals generated by a set in IS-algebras, Bull. Korean Math. Soc. 35 (1998) 615–624.

[6] Y.B. Jun, X.L. Xin and E.H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow J. Math. 24 (1998) 309–321.

[7] F.F. Kareem and E.R. Hasan, On KU-semigroups, Int. J. Sci. Nat. 9 (2018) 79–84.

[8] K.H. Kim, On structure of KS-semigroups, Int. Math. Forum 1 (2006) 67–76.

[9] S.M. Lee and K.H. Kim, A note on HS-algebras, Int. Math. Forum 6 (2011) 1529–1534.

[10] J.K. Park, W.H. Shim and E.H. Roh, On isomorphism theorems in IS-algebras, Soochow J. Math. 27 (2001) 153–160.

[11] F. Sultana and M.A. Chaudhary, BCH-semigroup ideals in BCH-semigroups, Palestine J. Math. 5 (2016) 1–5.