Completely Archimedean Semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 115-129.

Voir la notice de l'article provenant de la source Library of Science

In this paper we give a structural description of completely Archimedean semirings which is an extension of the structure theorem of completely Archimedean semigroups.
Keywords: completely simple semiring, completely Archimedean semiring, Rees matrix semiring, nil-extension, bi-ideal
@article{DMGAA_2018_38_1_a8,
     author = {Maity, Sunil K. and Chatterjee, Rumpa},
     title = {Completely {Archimedean} {Semirings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {115--129},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a8/}
}
TY  - JOUR
AU  - Maity, Sunil K.
AU  - Chatterjee, Rumpa
TI  - Completely Archimedean Semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 115
EP  - 129
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a8/
LA  - en
ID  - DMGAA_2018_38_1_a8
ER  - 
%0 Journal Article
%A Maity, Sunil K.
%A Chatterjee, Rumpa
%T Completely Archimedean Semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 115-129
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a8/
%G en
%F DMGAA_2018_38_1_a8
Maity, Sunil K.; Chatterjee, Rumpa. Completely Archimedean Semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 115-129. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a8/

[1] J.L. Galbiati and M.L. Veronesi, On quasi completely regular semigroups, Semigroup Forum 29 (1984) 271-275. doi: 10.1007/BF02573335

[2] J.M. Howie, Introduction to the theory of semigroups (Academic Press, 1976).

[3] J.S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science (Pitman Monographs and Surveys in Pure and Applied Mathematics, 54, Longman Scientific, 1992).

[4] M.K. Sen, S.K. Maity and K.P. Shum, On Completely Regular Semirings, Bull. Cal. Math. Soc. 98 (2006) 319-328.

[5] M.K. Sen, S.K. Maity and H.J. Weinert, Completely Simple Semirings, Bull. Cal. Math. Soc. 97 (2005) 163-172.

[6] M. Petrich and N.R. Reilly, Completely regular semigroups (Wiley, New York, 1999).

[7] S. Bogdanović, Semigroups with a system of subsemigroups (Novi Sad, 1985).

[8] S. Bogdanović and S. Milić, A nil-extension of a completely simple semigroup, Publ. Inst. Math. (Beograd) (N.S.) 36 (1984) 45-50.

[9] S.K. Maity and R. Ghosh, On Quasi Completely Regular Semirings, Semigroup Forum 89 (2014) 422-430. doi: 10.1007/s00233-014-9579-y

[10] S.K. Maity and R. Ghosh, Nil-extension of a Completely Simple Semiring, Discuss. Math. Gen. Alg. Appl. 33 (2013) 201-209. doi: 10.7151/dgmaa.1206

[11] S. Milić and V. Pavlović, Semigroups in which some ideal is a completely simple semigroup, Publ. Inst. Math. 30 (1982) 123-130.