Bi-Interior Ideals of Semigroups
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 69-78.

Voir la notice de l'article provenant de la source Library of Science

In this paper, as a further generalization of ideals, we introduce the notion of bi-interior ideal as a generalization of quasi ideal, bi-ideal and interior ideal of semigroup and study the properties of bi-interior ideals of semigroup, simple semigroup and regular semigroup.
Keywords: quasi ideal, bi-ideal, interior ideal, bi-interior ideal, bi-quasi ideal, regular semigroup, bi-interior simple semigroup
@article{DMGAA_2018_38_1_a4,
     author = {Rao, M. Murali Krishna},
     title = {Bi-Interior {Ideals} of {Semigroups}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a4/}
}
TY  - JOUR
AU  - Rao, M. Murali Krishna
TI  - Bi-Interior Ideals of Semigroups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 69
EP  - 78
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a4/
LA  - en
ID  - DMGAA_2018_38_1_a4
ER  - 
%0 Journal Article
%A Rao, M. Murali Krishna
%T Bi-Interior Ideals of Semigroups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 69-78
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a4/
%G en
%F DMGAA_2018_38_1_a4
Rao, M. Murali Krishna. Bi-Interior Ideals of Semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a4/

[1] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952) 624-625.

[2] K. Iseki, Quasi-ideals in semirings without zero, Proc. Japan Acad. 34 (1958) 79-84.

[3] W. Jantanan and T. Changphas, On 0-minimal (0, 2)-bi-ideals, Quasigroups and Related Systems 21 (2013) 83-90.

[4] S. Lajos, On the bi-ideals in semigroups, Proc. Japan Acad. 45 (1969) 710-712.

[5] S. Lajos and F.A. Szasz, On the bi-ideals in associative ring, Proc. Japan Acad. 46 (1970) 505-507.

[6] P. Palakawongna Ayutthaya and B. Pibaljommee, Characterizations of ordered k-regular semirings by ordered quasi k-ideals, Quasigroups and Related Systems 25 (2017) 109-120.

[7] M.M.K. Rao, Bi-quasi-ideals and fuzzy bi-quasi ideals of Γ-semigroups, Bull. Int. Math. Virtual Inst. 7 (2017) 231-242.

[8] A.M. Shabir and A. Batod, A note on quasi ideal in semigroups, Southeast Asian Bull. Math. 7 (2004) 923-928.

[9] O. Steinfeld, Uher die quasi ideals, Von halbgruppend Publ. Math., Debrecen 4 (1956) 262-275.