@article{DMGAA_2018_38_1_a4,
author = {Rao, M. Murali Krishna},
title = {Bi-Interior {Ideals} of {Semigroups}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {69--78},
year = {2018},
volume = {38},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a4/}
}
Rao, M. Murali Krishna. Bi-Interior Ideals of Semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a4/
[1] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952) 624-625.
[2] K. Iseki, Quasi-ideals in semirings without zero, Proc. Japan Acad. 34 (1958) 79-84.
[3] W. Jantanan and T. Changphas, On 0-minimal (0, 2)-bi-ideals, Quasigroups and Related Systems 21 (2013) 83-90.
[4] S. Lajos, On the bi-ideals in semigroups, Proc. Japan Acad. 45 (1969) 710-712.
[5] S. Lajos and F.A. Szasz, On the bi-ideals in associative ring, Proc. Japan Acad. 46 (1970) 505-507.
[6] P. Palakawongna Ayutthaya and B. Pibaljommee, Characterizations of ordered k-regular semirings by ordered quasi k-ideals, Quasigroups and Related Systems 25 (2017) 109-120.
[7] M.M.K. Rao, Bi-quasi-ideals and fuzzy bi-quasi ideals of Γ-semigroups, Bull. Int. Math. Virtual Inst. 7 (2017) 231-242.
[8] A.M. Shabir and A. Batod, A note on quasi ideal in semigroups, Southeast Asian Bull. Math. 7 (2004) 923-928.
[9] O. Steinfeld, Uher die quasi ideals, Von halbgruppend Publ. Math., Debrecen 4 (1956) 262-275.