Spectra of R-Vertex Join and R-Edge Join of Two Graphs
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 19-31.

Voir la notice de l'article provenant de la source Library of Science

The R-graph R(G) of a graph G is the graph obtained from G by introducing a new vertex ue for each e ∈ E(G) and making ue adjacent to both the end vertices of e. In this paper, we determine the adjacency, Laplacian and signless Laplacian spectra of R-vertex join and R-edge join of a connected regular graph with an arbitrary regular graph in terms of their eigenvalues. Moreover, applying these results we construct some non-regular A-cospectral, L-cospectral and Q-cospectral graphs, and find the number of spanning trees.
Keywords: spectrum, cospectral graphs, R-vertex join, R-edge join
@article{DMGAA_2018_38_1_a1,
     author = {Das, Arpita and Panigrahi, Pratima},
     title = {Spectra of {R-Vertex} {Join} and {R-Edge} {Join} of {Two} {Graphs}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a1/}
}
TY  - JOUR
AU  - Das, Arpita
AU  - Panigrahi, Pratima
TI  - Spectra of R-Vertex Join and R-Edge Join of Two Graphs
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 19
EP  - 31
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a1/
LA  - en
ID  - DMGAA_2018_38_1_a1
ER  - 
%0 Journal Article
%A Das, Arpita
%A Panigrahi, Pratima
%T Spectra of R-Vertex Join and R-Edge Join of Two Graphs
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 19-31
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a1/
%G en
%F DMGAA_2018_38_1_a1
Das, Arpita; Panigrahi, Pratima. Spectra of R-Vertex Join and R-Edge Join of Two Graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 19-31. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a1/

[1] S.Y. Cui and G.X. Tian, The spectrum and the signless Laplacian spectrum of coronae, Linear Algebra Appl. 437 (2012) 1692-1703. doi: 10.1016/j.laa.2012.05.019

[2] D. Cvetkovi´c, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications, Third edition (Johann Ambrosius Barth, Heidelberg, 1995).

[3] D. Cvetkovi´c, P. Rowlinson and S. Simi´c, An Introduction to the Theory of Graph Spectra (Cambridge University Press, 2009).

[4] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, New York, 2001).

[5] F. Harary, Graph Theory (Addison-Wesley, Reading, PA, 1969).

[6] G. Indulal, Spectra of two new joins of graphs and infinite families of integral graphs, Kragujevac J. Math. 36 (2012) 133-139.

[7] X. Liu, J. Zhou and C. Bu, Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs, Discrete Appl. Math. 187 (2015) 130-139. doi: 10.1016/j.dam.2015.02.021

[8] X. Liu, Z. Zhang, Spectra of subdivision-vertex and subdivision-edge joins of graphs, in: Bull. Malays. Math. Sci. Soc., Sanming Zhou (Ed(s)), (Springer, 2017). doi: 10.1007/s40840-017-0466-z

[9] C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435 (2011) 998-1007. doi: 10.1016/j.laa.2011.02.007

[10] E.R. Vandam and W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241-272. doi: 10.1016/S0024-3795(03)00483-X