Weak Relative Complements in Almost Distributive Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 5-18.

Voir la notice de l'article provenant de la source Library of Science

In this paper, the concept of relative complementation in almost distributive lattice is generalized. We obtain several properties on the sets of weak relative complement elements. We prove a sufficient condition for a weakly relatively complemented almost distributive lattice with dense elements to become a generalized stone almost distributive lattice.
Keywords: dense elements, relative complements, weak relative complementation, almost distributive lattice, generalized stone almost distributive lattice
@article{DMGAA_2018_38_1_a0,
     author = {Sirisetti, Ramesh and Jogarao, G.},
     title = {Weak {Relative} {Complements} in {Almost} {Distributive} {Lattices}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a0/}
}
TY  - JOUR
AU  - Sirisetti, Ramesh
AU  - Jogarao, G.
TI  - Weak Relative Complements in Almost Distributive Lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 5
EP  - 18
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a0/
LA  - en
ID  - DMGAA_2018_38_1_a0
ER  - 
%0 Journal Article
%A Sirisetti, Ramesh
%A Jogarao, G.
%T Weak Relative Complements in Almost Distributive Lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 5-18
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a0/
%G en
%F DMGAA_2018_38_1_a0
Sirisetti, Ramesh; Jogarao, G. Weak Relative Complements in Almost Distributive Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 5-18. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a0/

[1] G. Birkhoff, Lattice theory (Amer. Math. Soc. Colloquium Pub., 1967).

[2] G.C. Rao and G. Nanaji Rao, Dense elements in almost distributive lattices, Southeast Asian Bull. Math. 27 (2004) 1081-1088.

[3] G.C. Rao and M. Sambasiva Rao, Annihilator ideal in almost distributive lattices, Int. Math. Forum 4 (2009) 733-746.

[4] G.C. Rao and M. Sambasiva Rao, Annulets in almost distributive lattices, European. J. Pure and Applied Math. 2 (2009) 58-72.

[5] G.C. Rao and S. Ravi Kumar, Normal almost distributive lattices, Southeast Asian Bull. Math. 32 (2008) 831-841.

[6] S. Burris and H.P. Sankappanavar, A course in universal algebra (Springer-Verlag, 1980).

[7] S. Ramesh and G. Jogarao, Weakly relatively complemented almost distributive lattices, Palestine J. Math. 6 (2017) 1-10.

[8] U.M. Swamy and G.C. Rao, Almost distributive lattices, J. Austral. Math. Soc. 31 (1981) 77-91. doi: 10.1017/S1446788700018498