Developed Zariski topology-graph
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 233-247.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we introduce the developed Zariski topology-graph associated to an R-module M with respect to a subset X of the set of all quasi-prime submodules of M and investigate the relationship between the algebraic properties of M and the properties of its associated developed Zariski topology-graph.
Keywords: developed Zariski topology-graph, annihilating-submodule graph, quasi-prime submodules
@article{DMGAA_2017_37_2_a9,
     author = {Hassanzadeh-Lelekaami, Dawood and Karimi, Maryam},
     title = {Developed {Zariski} topology-graph},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {233--247},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a9/}
}
TY  - JOUR
AU  - Hassanzadeh-Lelekaami, Dawood
AU  - Karimi, Maryam
TI  - Developed Zariski topology-graph
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 233
EP  - 247
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a9/
LA  - en
ID  - DMGAA_2017_37_2_a9
ER  - 
%0 Journal Article
%A Hassanzadeh-Lelekaami, Dawood
%A Karimi, Maryam
%T Developed Zariski topology-graph
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 233-247
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a9/
%G en
%F DMGAA_2017_37_2_a9
Hassanzadeh-Lelekaami, Dawood; Karimi, Maryam. Developed Zariski topology-graph. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 233-247. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a9/

[1] A. Abbasi and D. Hassanzadeh-Lelekaami, Modules and spectral spaces, Comm. Algebra 40 (2012) 4111-4129. doi: 10.1080/00927872.2011.602273

[2] A. Abbasi and D. Hassanzadeh-Lelekaami, Quasi-prime submodules and developed Zariski topology, Algebra Colloq. (Spec 1) 19 (2012) 1089-1108. doi: 10.1142/S1005386712000879

[3] D.F. Anderson and S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007) 543-550. doi: 10.1016/j.jpaa.2006.10.007

[4] F.W. Anderson and K.R. Fuller, Rings and Categories of Mmodules (Springer-Verlag, New York, no. 13, Graduate Texts in Math., 1992). doi: 10.1007/978-1-4612-4418-9

[5] H. Ansari-Toroghy and F. Farshadifar, Product and dual product of submodules, Far East J. Math. Sci. 25 (2007) 447-455.

[6] H. Ansari-Toroghy and Sh. Habibi, The Zariski topology-graph of modules over commutative rings, Comm. Algebra 42 (2014) 3283-3296. doi: 10.1080/00927872.2013.780065

[7] M. Axtell, J. Coykendall and J. Stickles, Zero-divisor graphs of polynomial and power series over commutative rings, Comm. Algebra 33 (2005) 2043-2050. doi: 10.1081/AGB-200063357

[8] F. Azarpanah and M. Motamedi, Zero-divisor graph of C(X), Acta Math. Hungar 108 (2005) 25-36. doi: 10.1007/s10474-005-0205-z

[9] A. Azizi, Strongly irreducible ideals, J. Aust. Math. Soc. 84 (2008) 145-154. doi: 10.1017/S1446788708000062

[10] A. Barnard, Multiplication modules, J. Algebra 71 (1981) 174-178. doi: 10.1016/0021-8693(81)90112-5

[11] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226. doi: 10.1016/0021-8693(88)90202-5

[12] N. Bourbaki, Commutative Algebra, Chap. 1-7 (Paris, Hermann, 1972).

[13] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009) 5381-5392. doi: 10.1016/j.disc.2008.11.034

[14] S. Ebrahimi-Atani and S. Habibi, The total torsion element graph of a module over a commutative ring, An. St. Univ. Ovidius Constanta 19 (2011) 23-34.

[15] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra 16 (1988) 755-779. doi: 10.1080/00927878808823601

[16] F. Harary, Graph Theory (Addison-Wesley, Reading, Mass., 1969).

[17] W.J. Heinzer, L.J. Ratlif and D.E. Rush, Strongly irreducible ideals of a commutative ring, J. Pure Appl. Algebra 166 (2002) 267-275. doi: 10.1016/S0022-4049(01)00043-3

[18] H.R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008) 1801-1808. doi: 0.1016/j.jalgebra.2007.02.003

[19] P.K. Sharma and S.M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176 (1995) 124-127. doi: 10.1006/jabr.1995.1236