A note on ideal based zero-divisor graph of a commutative ring
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 177-187.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we consider the ideal based zero divisor graph Γ_I(R) of a commutative ring R. We discuss some graph theoretical properties of Γ_I(R) in relation with zero divisor graph. We also relate certain parameters like vertex chromatic number, maximum degree and minimum degree for the graph Γ_I(R) with that of Γ(R/I). Further we determine a necessary and sufficient condition for the graph to be Eulerian and regular.
Keywords: zero-divisor graph, chromatic number, ideal based zero divisor graph, clique number
@article{DMGAA_2017_37_2_a5,
     author = {Mallika, A. and Kala, R. and Selvakumar, K.},
     title = {A note on ideal based zero-divisor graph of a commutative ring},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {177--187},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a5/}
}
TY  - JOUR
AU  - Mallika, A.
AU  - Kala, R.
AU  - Selvakumar, K.
TI  - A note on ideal based zero-divisor graph of a commutative ring
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 177
EP  - 187
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a5/
LA  - en
ID  - DMGAA_2017_37_2_a5
ER  - 
%0 Journal Article
%A Mallika, A.
%A Kala, R.
%A Selvakumar, K.
%T A note on ideal based zero-divisor graph of a commutative ring
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 177-187
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a5/
%G en
%F DMGAA_2017_37_2_a5
Mallika, A.; Kala, R.; Selvakumar, K. A note on ideal based zero-divisor graph of a commutative ring. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 177-187. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a5/

[1] S. Akbari, H.R. Maimani and S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, J. Algebra 270 (2003) 169-180. doi: 10.1016/S0021-8693(03)00370-3

[2] S. Akbari and A. Mohammadian, On the zero divisor graph of a commutative Ring, J. Algebra 274 (2004) 847-855. doi: 10.1016/S0021-8693(03)00435-6

[3] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447. doi: 10.1006/jabr.1998.7840

[4] D.D. Anderson and M. Naseer, Beck’s Coloring of commutative ring, J. Algebra 159 (1993) 500-514. doi: 10.1006/jabr.1993.1171

[5] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (Addison Wesley, Reading, MA, 1969).

[6] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226. doi: 10.1016/0021-8693(88)90202-5

[7] N. Biggs, Coloring of a commutative rings (Cambridge University Press Cambridge, 1973).

[8] F. DeMeyer, T. Mckenzie and K. Schneider, The zero divisor graph of a commutative semi group, Semi group Forum 65 (2002) 206-214. doi: 10.1007/s002330010128

[9] G. Chartrand and P. Zhang, Introduction to Graph Theory (Tata McGraw-Hill, 2006).

[10] S.P. Redmond, Generalizations of the zero-divisor graph of a Ring (Doctoral Dissertation, The University of Tennessee, Knoxville, TN, 2001).

[11] S.P. Redmond, The zero-divisor graph of a non-commutative ring, Inter. J. Commutative Rings 1 (2002) 203-211.

[12] S.P. Redmond, An ideal based zero-divisor graph, Comm. Algebra 31 (2003) 4425-4443. doi: 10.1081/AGB-120022801