On QI-algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 137-145.

Voir la notice de l'article provenant de la source Library of Science

In this paper, the notion of a QI-algebra is introduced which is a generalization of a BI-algebra and there are studied its properties. We considered ideals, congruence kernels in a QI-algebra and characterized congruence kernels whenever a QI-algebra is right distributive.
Keywords: BI-algebra, QI-algebra, right distributive, ideal, congruence kernel
@article{DMGAA_2017_37_2_a2,
     author = {Bandaru, Ravi Kumar},
     title = {On {QI-algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {137--145},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a2/}
}
TY  - JOUR
AU  - Bandaru, Ravi Kumar
TI  - On QI-algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 137
EP  - 145
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a2/
LA  - en
ID  - DMGAA_2017_37_2_a2
ER  - 
%0 Journal Article
%A Bandaru, Ravi Kumar
%T On QI-algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 137-145
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a2/
%G en
%F DMGAA_2017_37_2_a2
Bandaru, Ravi Kumar. On QI-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 137-145. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a2/

[1] A.B. Saeid, H. Sik Kim and A. Rezaei, On BI-algebras, An. Şt. Univ. Ovidius Constanţa 25 (2017) 177-194. doi: 10.1515/auom-2017-0014

[2] J.C. Abbott, Semi-bolean algebra, Matem. Vestnik 4 (1967) 177-198. http://eudml.org/doc/258960

[3] Y. Imai and K. Isaeki, On axiom systems of propositional calculi, XIV, Proc. Japan Acad. 42 (1966) 19-22. doi: 10.3792/pja/1195522169

[4] I. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978) 1-26.

[5] I. Iseki, On BCI-algebras, Mathematics Seminar Notes 8 (1980) 125-130. http://www.math.kobe-u.ac.jp/jmsj/kjm/

[6] W.Y. Chen and J.S. Oliveira, Implication algebras and the metropolis rota axioms for cubic lattices, J. Algebra 171 (1995) 383-396. doi: 10.1006/jabr.1995.1017