On perfectness of intersection graph of ideals of ℤn
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 119-126.

Voir la notice de l'article provenant de la source Library of Science

In this short paper, we characterize the positive integers n for which intersection graph of ideals of ℤn is perfect.
Keywords: intersection graph, strong perfect graph theorem, weakly triangulated graph, induced odd cycle
@article{DMGAA_2017_37_2_a0,
     author = {Das, Angsuman},
     title = {On perfectness of intersection graph of ideals of {\ensuremath{\mathbb{Z}}\protect\textsubscript{n}}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {119--126},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a0/}
}
TY  - JOUR
AU  - Das, Angsuman
TI  - On perfectness of intersection graph of ideals of ℤn
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 119
EP  - 126
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a0/
LA  - en
ID  - DMGAA_2017_37_2_a0
ER  - 
%0 Journal Article
%A Das, Angsuman
%T On perfectness of intersection graph of ideals of ℤn
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 119-126
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a0/
%G en
%F DMGAA_2017_37_2_a0
Das, Angsuman. On perfectness of intersection graph of ideals of ℤn. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 119-126. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a0/

[1] A. Amini, B. Amini, E. Momtahan and M.H. Shirdareh Haghighi, On a Graph of Ideals, Acta Math. Hungar. 134 (2012) 369-384.

[2] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447.

[3] A. Badawi, On the Dot Product Graph of a Commutative Ring, Comm. Algebra 43 (2015) 43-50.

[4] J. Bosak, The graphs of semigroups, in: Theory of Graphs and Application (Academic Press, New York, 1964) 119-125.

[5] P.J. Cameron and S. Ghosh, The power graph of a finite group, Discrete Math. 311 (2011) 1220-1222.

[6] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009) 5381-5392.

[7] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (2006) 51-229.

[8] A. Das, Non-zero component graph of a finite dimensional vector space, Commun. Algebra 44 (2016) 3918-3926. doi: 10.1080/00927872.2015.1065866

[9] A. Das, On non-zero component graph of vector spaces over finite fields, J. Alg. Appl. 16 (2017). doi: 10.1142/S0219498817500074

[10] A. Das, Non-zero component union graph of a finite dimensional vector space, Linear and Multilinear Algebra 65 (6) (2017) 1276-1287. doi: 10.1080/03081087.2016.1234577

[11] A. Das, Subspace inclusion graph of a vector space, Commun. Algebra 44 (2016) 4724-4731. doi: 10.1080/00927872.2015.1110588

[12] A. Das, On subspace inclusion graph of a vector space, Linear and Multilinear Algebra, to appear. doi: 10.1080/03081087.2017.1306016

[13] R.B. Hayward, Weakly triangulated graphs, J. Combin. Theory Ser. B 39 (1985) 200-209.

[14] H.R. Maimani, M.R. Pournaki, A. Tehranian and S. Yassemi, Graphs attached to rings revisited, Arab. J. Sci. Eng. 36 (2011) 997-1011.

[15] R. Nikandish and M.J. Nikmehr, The intersection graph of ideals of Zn is weakly perfect, Util. Math. (to appear).

[16] D.B. West, Introduction to Graph Theory (Prentice Hall, 2001).