On the second spectrum of lattice modules
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 59-74.

Voir la notice de l'article provenant de la source Library of Science

The second spectrum Specs(M) is the collection of all second elements of M. In this paper, we study the topology on Specs(M), which is a generalization of the Zariski topology on the prime spectrum of lattice modules. Besides some properties, Specs(M) is characterized and the interrelations between the topological properties of Specs(M) and the algebraic properties of M, are studied.
Keywords: second element, prime element, maximal element, minimal element, spectral space
@article{DMGAA_2017_37_1_a4,
     author = {Phadatare, Narayan and Ballal, Sachin and Kharat, Vilas},
     title = {On the second spectrum of lattice modules},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {59--74},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a4/}
}
TY  - JOUR
AU  - Phadatare, Narayan
AU  - Ballal, Sachin
AU  - Kharat, Vilas
TI  - On the second spectrum of lattice modules
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 59
EP  - 74
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a4/
LA  - en
ID  - DMGAA_2017_37_1_a4
ER  - 
%0 Journal Article
%A Phadatare, Narayan
%A Ballal, Sachin
%A Kharat, Vilas
%T On the second spectrum of lattice modules
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 59-74
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a4/
%G en
%F DMGAA_2017_37_1_a4
Phadatare, Narayan; Ballal, Sachin; Kharat, Vilas. On the second spectrum of lattice modules. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 59-74. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a4/

[1] H. Ansari-Toroghy and F. Farshadifar, The Zariski topology on the second spectrum of a module, Algebr. Colloq. 21 (2014) 671–688. doi:10.1142/S1005386714000625

[2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, 1969).

[3] E.A. AL-Khouja, Maximal elements and prime elements in lattice modules, Damascus Univ. Basic Sci. 19 (2003) 9–20.

[4] S. Ballal and V. Kharat, On generalization of prime, weakly prime and almost prime elements in multiplicative lattices, Int. J. Algebra 8 (2014) 439–449. doi:10.12988/ija.2014.4434

[5] S. Ballal and V. Kharat, Zariski topology on lattice modules, Asian Eur. J. Math. 8 1550066 (2015) (10 pages). doi:10.1142/S1793557115500667.

[6] S. Ballal and V. Kharat, On ϕ-absorbing primary elements in lattice modules, Algebra (2015) 183930 (6 pages). doi:10.1155/2015/183930

[7] S. Ballal, M. Gophane and V. Kharat, On weakly primary elements in multiplicative lattices, Southeast Asian Bull. Math. 40 (2016) 49–57.

[8] M. Behboodi and M.R. Haddadi, Classical Zariski topology of modules and spectral spaces I, Int. Electron. J. Algebra 4 (2008) 104–130.

[9] M. Behboodi and M.R. Haddadi, Classical Zariski topology of modules and spectral spaces II, Int. Electron. J. Algebra 4 (2008) 131–148.

[10] F. Callialp, U. Tekir and G. Ulucak, Comultiplication lattice modules, Iranian Journal of Science and Technology, A2 39 (2015) 213–220.

[11] F. Çallialp, G. Ulucak and U. Tekir, On the Zariski topology over an L-module M, Turk. J. Math. doi:10.3906/mat-1502-31

[12] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969) 43–60. doi:10.1090/S0002-9947-1969-0251026-X

[13] V. Joshi and S. Ballal, A note on n-Baer multiplicative lattices, Southeast Asian Bull. Math. 39 (2015) 67–76.

[14] J.A. Johnson, a-adic completions of Noetherian lattice modules, Fund. Math. 66 (1970) 341–371.

[15] C.P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999) 417–425.

[16] J.R. Munkres, Topology, Second Ed. (Prentice Hall, New Jersey, 1999).

[17] R.L. McCasland, M.E. Moore and P.F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997) 79–103. doi:10.1080/00927879708825840

[18] N.K. Thakare, C.S. Manjarekar and S. Maeda, Abstract spectral theory II: minimal characters and minimal spectrums of multiplicative lattices, Acta Sci. Math. 52 (1988) 53–67.

[19] N.K. Thakare and C.S. Manjarekar, Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character, in: Algebra and Its Applications (Marcel Dekker, New York, 1984), pp. 265–276.

[20] N. Phadatare, S. Ballal and V. Kharat, On the quasi-prime spectrum of lattice modules, (Communicated).