Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2017_37_1_a4, author = {Phadatare, Narayan and Ballal, Sachin and Kharat, Vilas}, title = {On the second spectrum of lattice modules}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {59--74}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a4/} }
TY - JOUR AU - Phadatare, Narayan AU - Ballal, Sachin AU - Kharat, Vilas TI - On the second spectrum of lattice modules JO - Discussiones Mathematicae. General Algebra and Applications PY - 2017 SP - 59 EP - 74 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a4/ LA - en ID - DMGAA_2017_37_1_a4 ER -
%0 Journal Article %A Phadatare, Narayan %A Ballal, Sachin %A Kharat, Vilas %T On the second spectrum of lattice modules %J Discussiones Mathematicae. General Algebra and Applications %D 2017 %P 59-74 %V 37 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a4/ %G en %F DMGAA_2017_37_1_a4
Phadatare, Narayan; Ballal, Sachin; Kharat, Vilas. On the second spectrum of lattice modules. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 59-74. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a4/
[1] H. Ansari-Toroghy and F. Farshadifar, The Zariski topology on the second spectrum of a module, Algebr. Colloq. 21 (2014) 671–688. doi:10.1142/S1005386714000625
[2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, 1969).
[3] E.A. AL-Khouja, Maximal elements and prime elements in lattice modules, Damascus Univ. Basic Sci. 19 (2003) 9–20.
[4] S. Ballal and V. Kharat, On generalization of prime, weakly prime and almost prime elements in multiplicative lattices, Int. J. Algebra 8 (2014) 439–449. doi:10.12988/ija.2014.4434
[5] S. Ballal and V. Kharat, Zariski topology on lattice modules, Asian Eur. J. Math. 8 1550066 (2015) (10 pages). doi:10.1142/S1793557115500667.
[6] S. Ballal and V. Kharat, On ϕ-absorbing primary elements in lattice modules, Algebra (2015) 183930 (6 pages). doi:10.1155/2015/183930
[7] S. Ballal, M. Gophane and V. Kharat, On weakly primary elements in multiplicative lattices, Southeast Asian Bull. Math. 40 (2016) 49–57.
[8] M. Behboodi and M.R. Haddadi, Classical Zariski topology of modules and spectral spaces I, Int. Electron. J. Algebra 4 (2008) 104–130.
[9] M. Behboodi and M.R. Haddadi, Classical Zariski topology of modules and spectral spaces II, Int. Electron. J. Algebra 4 (2008) 131–148.
[10] F. Callialp, U. Tekir and G. Ulucak, Comultiplication lattice modules, Iranian Journal of Science and Technology, A2 39 (2015) 213–220.
[11] F. Çallialp, G. Ulucak and U. Tekir, On the Zariski topology over an L-module M, Turk. J. Math. doi:10.3906/mat-1502-31
[12] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969) 43–60. doi:10.1090/S0002-9947-1969-0251026-X
[13] V. Joshi and S. Ballal, A note on n-Baer multiplicative lattices, Southeast Asian Bull. Math. 39 (2015) 67–76.
[14] J.A. Johnson, a-adic completions of Noetherian lattice modules, Fund. Math. 66 (1970) 341–371.
[15] C.P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999) 417–425.
[16] J.R. Munkres, Topology, Second Ed. (Prentice Hall, New Jersey, 1999).
[17] R.L. McCasland, M.E. Moore and P.F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997) 79–103. doi:10.1080/00927879708825840
[18] N.K. Thakare, C.S. Manjarekar and S. Maeda, Abstract spectral theory II: minimal characters and minimal spectrums of multiplicative lattices, Acta Sci. Math. 52 (1988) 53–67.
[19] N.K. Thakare and C.S. Manjarekar, Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character, in: Algebra and Its Applications (Marcel Dekker, New York, 1984), pp. 265–276.
[20] N. Phadatare, S. Ballal and V. Kharat, On the quasi-prime spectrum of lattice modules, (Communicated).