All regular-solid varieties of idempotent semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 5-12.

Voir la notice de l'article provenant de la source Library of Science

The lattice of all regular-solid varieties of semirings splits in two complete sublattices: the sublattice of all idempotent regular-solid varieties of semirings and the sublattice of all normal regular-solid varieties of semirings. In this paper, we discuss the idempotent part.
Keywords: semiring, hypersubstitution, regular hypersubstitution, regular hyperidentity, solid variety, regular-solid variety
@article{DMGAA_2017_37_1_a0,
     author = {Hounnon, Hippolyte},
     title = {All regular-solid varieties of idempotent semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--12},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a0/}
}
TY  - JOUR
AU  - Hounnon, Hippolyte
TI  - All regular-solid varieties of idempotent semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 5
EP  - 12
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a0/
LA  - en
ID  - DMGAA_2017_37_1_a0
ER  - 
%0 Journal Article
%A Hounnon, Hippolyte
%T All regular-solid varieties of idempotent semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 5-12
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a0/
%G en
%F DMGAA_2017_37_1_a0
Hounnon, Hippolyte. All regular-solid varieties of idempotent semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a0/

[1] K. Denecke and H. Hounnon, All solid varieties of semirings, J. Algebra 248 (2002) 107–117. doi:10.1006/jabr.2002.9023

[2] K. Denecke and H. Hounnon, All pre-solid varieties of semirings, Demonstratio Math. XXXVII (2004) 13–34.

[3] K. Denecke and S.L. Wismath, Hyperidentities and Clones (Gordon and Breach Science Publishers, 2000). ISBN 9789056992354

[4] E. Graczyńska, On normal and regular identities, Algebra Universalis 27 (1990) 387–397. doi:10.1007/BF01190718

[5] U. Hebisch and H.J. Weinert, Semirings – Algebraic Theory and Applications in Computer Science (World Scientific, Singapore-New Jersey-London-Hong Kong, 1993).

[6] F. Pastijn, Idempotent distributive semirings II, Semigroup Forum 26 (1983) 151–161. doi:10.1007/BF02572828

[7] R. McKenzie, G. McNulty and W.F. Taylor, Algebras, Lattices Varieties, Vol. 1 (Inc. Belmonts Califormia, 1987).