Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2017_37_1_a0, author = {Hounnon, Hippolyte}, title = {All regular-solid varieties of idempotent semirings}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {5--12}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a0/} }
TY - JOUR AU - Hounnon, Hippolyte TI - All regular-solid varieties of idempotent semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2017 SP - 5 EP - 12 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a0/ LA - en ID - DMGAA_2017_37_1_a0 ER -
Hounnon, Hippolyte. All regular-solid varieties of idempotent semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a0/
[1] K. Denecke and H. Hounnon, All solid varieties of semirings, J. Algebra 248 (2002) 107–117. doi:10.1006/jabr.2002.9023
[2] K. Denecke and H. Hounnon, All pre-solid varieties of semirings, Demonstratio Math. XXXVII (2004) 13–34.
[3] K. Denecke and S.L. Wismath, Hyperidentities and Clones (Gordon and Breach Science Publishers, 2000). ISBN 9789056992354
[4] E. Graczyńska, On normal and regular identities, Algebra Universalis 27 (1990) 387–397. doi:10.1007/BF01190718
[5] U. Hebisch and H.J. Weinert, Semirings – Algebraic Theory and Applications in Computer Science (World Scientific, Singapore-New Jersey-London-Hong Kong, 1993).
[6] F. Pastijn, Idempotent distributive semirings II, Semigroup Forum 26 (1983) 151–161. doi:10.1007/BF02572828
[7] R. McKenzie, G. McNulty and W.F. Taylor, Algebras, Lattices Varieties, Vol. 1 (Inc. Belmonts Califormia, 1987).