Pointed principally ordered regular semigroups
Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 101-111

Voir la notice de l'article provenant de la source Library of Science

An ordered semigroup S is said to be principally ordered if, for every x ∈ S there exists x* = maxy ∈ S | xyx ⩽ x. Here we investigate those principally ordered regular semigroups that are pointed in the sense that the classes modulo Green's relations ℒ,ℛ, have biggest elements which are idempotent. Such a semigroup is necessarily a semiband. In particular we describe the subalgebra of (S;*) generated by a pair of comparable idempotents that are -related. We also prove that those -classes which are subsemigroups are ordered rectangular bands.
Keywords: regular semigroup, principally ordered, naturally ordered, Green's relations
@article{DMGAA_2016_36_1_a7,
     author = {Blyth, T. and Pinto, G.},
     title = {Pointed principally ordered regular semigroups},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {101--111},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a7/}
}
TY  - JOUR
AU  - Blyth, T.
AU  - Pinto, G.
TI  - Pointed principally ordered regular semigroups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2016
SP  - 101
EP  - 111
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a7/
LA  - en
ID  - DMGAA_2016_36_1_a7
ER  - 
%0 Journal Article
%A Blyth, T.
%A Pinto, G.
%T Pointed principally ordered regular semigroups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2016
%P 101-111
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a7/
%G en
%F DMGAA_2016_36_1_a7
Blyth, T.; Pinto, G. Pointed principally ordered regular semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 101-111. http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a7/