Superior subalgebras and ideals of BCK/BCI-algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 85-99.

Voir la notice de l'article provenant de la source Library of Science

The notions of superior subalgebras and (commutative) superior ideals are introduced, and their relations and related properties are investigated. Conditions for a superior ideal to be commutative are provided.
Keywords: superior mapping, superior subalgebra, (commutative) superior ideal
@article{DMGAA_2016_36_1_a6,
     author = {Jun, Young and Song, Seok},
     title = {Superior subalgebras and ideals of {BCK/BCI-algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {85--99},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a6/}
}
TY  - JOUR
AU  - Jun, Young
AU  - Song, Seok
TI  - Superior subalgebras and ideals of BCK/BCI-algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2016
SP  - 85
EP  - 99
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a6/
LA  - en
ID  - DMGAA_2016_36_1_a6
ER  - 
%0 Journal Article
%A Jun, Young
%A Song, Seok
%T Superior subalgebras and ideals of BCK/BCI-algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2016
%P 85-99
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a6/
%G en
%F DMGAA_2016_36_1_a6
Jun, Young; Song, Seok. Superior subalgebras and ideals of BCK/BCI-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 85-99. http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a6/

[1] J. D. Bashford and P. D. Jarvis, The genetic code as a peridic table: algebraic aspects, BioSystems 57 (2000), 147-161. doi: 10.1016/S0303-2647(00)00097-6

[2] L. Frappat, A. Sciarrino and P. Sorba, Crystalizing the genetic code, J. Biological Physics 27 (2001), 1-34. doi: 10.1023/A:1011874407742

[3] Y. Huang, BCI-algebra (Science Press, Beijing, 2006). ISBN 97-7-03-015411.

[4] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.

[5] Y.B. Jun and S.Z. Song, Codes based on BCK-algebras, Inform. Sci. 181 (2011), 5102-5109. doi: 10.1016/j.ins.2011.07.006

[6] M.K. Kinyon and A.A. Sagle, Quadratic dynamical systems and algebras, J. Diff. Equ. 117 (1995), 67-126. doi: 10.1006/jdeq.1995.1049

[7] J. Meng, Commutative ideals in BCK-algebras, Pure Appl. Math. (in China) 9 (1991), 49-53.

[8] J. Meng, On ideals in BCK-algebras, Math. Japonica 40 (1994), 143-154.

[9] J. Meng and Y.B. Jun, BCK-algebras (Kyungmoon Sa Co. Seoul, 1994).

[10] R. Sáanchez, R. Grau and E. Morgado, A novel Lie algebra of the genetic code over the Galois field of four DNA bases, Mathematical Biosciences 202 (2006), 156-174. doi: 10.1016/j.mbs.2006.03.017

[11] J.J. Tian and B.L. Li, Coalgebraic structure of genetics inheritance, Mathematical Biosciences and Engineering 1 (2004), PMID: 20369970 [PubMed], 243-266.