On the associated prime ideals of local cohomology modules defined by a pair of ideals
Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 15-23
Voir la notice de l'article provenant de la source Library of Science
Let I and J be two ideals of a commutative Noetherian ring R and M be an R-module. For a non-negative integer n it is shown that, if the sets Ass_R(Ext^n_R(R/I,M)) and Supp_R(Ext^i_R(R/I,H^j_I,J(M))) are finite for all i ≤ n+1 and all j n, then so is Ass_R(Hom_R(R/I,H^n_I,J(M))). We also study the finiteness of Ass_R(Ext^i_R(R/I,H^n_I,J(M))) for i = 1,2.
Keywords:
local cohomology modules defined by a pair of ideals, spectral sequences, associated prime ideals
@article{DMGAA_2016_36_1_a1,
author = {Jahangiri, Maryam and Habibi, Zohreh and Amoli, Khadijeh},
title = {On the associated prime ideals of local cohomology modules defined by a pair of ideals},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {15--23},
publisher = {mathdoc},
volume = {36},
number = {1},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a1/}
}
TY - JOUR AU - Jahangiri, Maryam AU - Habibi, Zohreh AU - Amoli, Khadijeh TI - On the associated prime ideals of local cohomology modules defined by a pair of ideals JO - Discussiones Mathematicae. General Algebra and Applications PY - 2016 SP - 15 EP - 23 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a1/ LA - en ID - DMGAA_2016_36_1_a1 ER -
%0 Journal Article %A Jahangiri, Maryam %A Habibi, Zohreh %A Amoli, Khadijeh %T On the associated prime ideals of local cohomology modules defined by a pair of ideals %J Discussiones Mathematicae. General Algebra and Applications %D 2016 %P 15-23 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a1/ %G en %F DMGAA_2016_36_1_a1
Jahangiri, Maryam; Habibi, Zohreh; Amoli, Khadijeh. On the associated prime ideals of local cohomology modules defined by a pair of ideals. Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 15-23. http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a1/