An equational axiomatization of Post Almost Distributive Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 5-13.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we prove that the class of P₂-Almost Distributive Lattices and Post Almost Distributive Lattices are equationally definable.
Keywords: Almost Distributive Lattices (ADL), P₂-algebras, P₂-Almost Distributive Lattices (P₂-ADL), Post algebras, Post Almost Distributive Lattices (Post ADL)
@article{DMGAA_2016_36_1_a0,
     author = {Kakumanu, Naveen and Shum, Kar},
     title = {An equational axiomatization of {Post} {Almost} {Distributive} {Lattices}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a0/}
}
TY  - JOUR
AU  - Kakumanu, Naveen
AU  - Shum, Kar
TI  - An equational axiomatization of Post Almost Distributive Lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2016
SP  - 5
EP  - 13
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a0/
LA  - en
ID  - DMGAA_2016_36_1_a0
ER  - 
%0 Journal Article
%A Kakumanu, Naveen
%A Shum, Kar
%T An equational axiomatization of Post Almost Distributive Lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2016
%P 5-13
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a0/
%G en
%F DMGAA_2016_36_1_a0
Kakumanu, Naveen; Shum, Kar. An equational axiomatization of Post Almost Distributive Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a0/

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV, Providence (1967), USA.

[2] G. Epstein and A. Horn, P-algebras, an abstraction from Post algebras, Algebra Universalis 4 (1) (1974), 195-206.

[3] G. Epstein and A. Horn, Chain based Lattices, Pacific J. Math. 55 (1) (1974), 65-84.

[4] E.L. Post, The Two-Valued Iterative Systems of Mathematical Logic, Annals of Mathematics Studies, no. 5 (Princeton University Press, Princeton, N.J., 1941), viii+122 pp.

[5] G.C. Rao and A. Berhanu, Heyting almost distributive lattices, Inter. Jour. Comp. Cogn. 8 (3) (2010), 85-89.

[6] G.C. Rao and A. Mihret, P₀-almost distributive lattices, to appear in Southeast Asian Bull. Math.

[7] G.C. Rao and A. Mihret, P₂-almost distributive lattices, accepted for publication in Journal of Global research in Mathematical Archives.

[8] G.C. Rao and A. Mihret, Post almost distributive lattices, Accepted for publication in Southeast Asian Bull. Math.

[9] G.C. Rao, A. Mihret and Naveen Kumar Kakumanu, P₁-almost distributive lattices, Inter. J. Math. Archive 4 (2) (2013), 100-110.

[10] G.C. Rao and Naveen Kumar Kakumanu, B-almost distributive lattices, Southeast Asian Bulletin of Mathematics 39 (2015), 545-554.

[11] G.C. Rao and Naveen Kumar Kakumanu, BL-almost distributive lattices, Asian European Journal of Mathematicas 5 (2) (2012), 1250022-1 to 1250022-8. doi: 10.1142/S1793557112500222

[12] G.C. Rao and Naveen Kumar Kakumanu, Characterization of BL-almost distributive lattices, Asian-European Journal of Mathematics 8 (3) (2015), 1550041 (13 pages). doi: 10.1142/S1793557115500412

[13] Naveen Kumar Kakumanu, Notes on post almost distributive lattices, communicated for publication.

[14] Naveen Kumar Kakumanu and G.C. Rao, Properties of P₀-almost distributive lattices, Int. J. of Scientific and Innovative Mathematical Research (IJSIMR) 2 (3) (2014), 256-261.

[15] G.C. Rao and Naveen Kumar Kakumanu, Pseudo-supplemented almost distributive lattices, Southeast Asian Bull. Math. 37 (2013), 131-138.

[16] U.M. Swamy and G.C. Rao, Almost distributive lattices, J. Aust. Math. Soc. (A) 31 (1981), 77-91.

[17] U.M. Swamy and S. Ramesh, Birkhoff center of ADL, Int. J. Algebra 3 (2009), 539-546.