Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2016_36_1_a0, author = {Kakumanu, Naveen and Shum, Kar}, title = {An equational axiomatization of {Post} {Almost} {Distributive} {Lattices}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {5--13}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a0/} }
TY - JOUR AU - Kakumanu, Naveen AU - Shum, Kar TI - An equational axiomatization of Post Almost Distributive Lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2016 SP - 5 EP - 13 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a0/ LA - en ID - DMGAA_2016_36_1_a0 ER -
%0 Journal Article %A Kakumanu, Naveen %A Shum, Kar %T An equational axiomatization of Post Almost Distributive Lattices %J Discussiones Mathematicae. General Algebra and Applications %D 2016 %P 5-13 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a0/ %G en %F DMGAA_2016_36_1_a0
Kakumanu, Naveen; Shum, Kar. An equational axiomatization of Post Almost Distributive Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a0/
[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV, Providence (1967), USA.
[2] G. Epstein and A. Horn, P-algebras, an abstraction from Post algebras, Algebra Universalis 4 (1) (1974), 195-206.
[3] G. Epstein and A. Horn, Chain based Lattices, Pacific J. Math. 55 (1) (1974), 65-84.
[4] E.L. Post, The Two-Valued Iterative Systems of Mathematical Logic, Annals of Mathematics Studies, no. 5 (Princeton University Press, Princeton, N.J., 1941), viii+122 pp.
[5] G.C. Rao and A. Berhanu, Heyting almost distributive lattices, Inter. Jour. Comp. Cogn. 8 (3) (2010), 85-89.
[6] G.C. Rao and A. Mihret, P₀-almost distributive lattices, to appear in Southeast Asian Bull. Math.
[7] G.C. Rao and A. Mihret, P₂-almost distributive lattices, accepted for publication in Journal of Global research in Mathematical Archives.
[8] G.C. Rao and A. Mihret, Post almost distributive lattices, Accepted for publication in Southeast Asian Bull. Math.
[9] G.C. Rao, A. Mihret and Naveen Kumar Kakumanu, P₁-almost distributive lattices, Inter. J. Math. Archive 4 (2) (2013), 100-110.
[10] G.C. Rao and Naveen Kumar Kakumanu, B-almost distributive lattices, Southeast Asian Bulletin of Mathematics 39 (2015), 545-554.
[11] G.C. Rao and Naveen Kumar Kakumanu, BL-almost distributive lattices, Asian European Journal of Mathematicas 5 (2) (2012), 1250022-1 to 1250022-8. doi: 10.1142/S1793557112500222
[12] G.C. Rao and Naveen Kumar Kakumanu, Characterization of BL-almost distributive lattices, Asian-European Journal of Mathematics 8 (3) (2015), 1550041 (13 pages). doi: 10.1142/S1793557115500412
[13] Naveen Kumar Kakumanu, Notes on post almost distributive lattices, communicated for publication.
[14] Naveen Kumar Kakumanu and G.C. Rao, Properties of P₀-almost distributive lattices, Int. J. of Scientific and Innovative Mathematical Research (IJSIMR) 2 (3) (2014), 256-261.
[15] G.C. Rao and Naveen Kumar Kakumanu, Pseudo-supplemented almost distributive lattices, Southeast Asian Bull. Math. 37 (2013), 131-138.
[16] U.M. Swamy and G.C. Rao, Almost distributive lattices, J. Aust. Math. Soc. (A) 31 (1981), 77-91.
[17] U.M. Swamy and S. Ramesh, Birkhoff center of ADL, Int. J. Algebra 3 (2009), 539-546.