Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2015_35_2_a2, author = {Dymek, Grzegorz}, title = {On a periodic part of {pseudo-BCI-algebras}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {139--157}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a2/} }
Dymek, Grzegorz. On a periodic part of pseudo-BCI-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 139-157. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a2/
[1] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187-190.
[2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73-90.
[3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014), 167-187.
[4] G. Dymek, On a period of an element of pseudo-BCI-algebras, Discuss. Math. Gen. Algebra Appl., to appear..
[5] G. Dymek, On pseudo-BCI-algebras, Ann. Univ. Mariae Curie-Skłodowska Sect. A, to appear..
[6] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012), 461-474.
[7] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE,Bucharest, 2008..
[8] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29. doi: 10.3792/pja/1195522171
[9] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39-46.