On a periodic part of pseudo-BCI-algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 139-157.

Voir la notice de l'article provenant de la source Library of Science

In the paper the connections between the set of some maximal elements of a pseudo-BCI-algebra and deductive systems are established. Using these facts, a periodic part of a pseudo-BCI-algebra is studied.
Keywords: pseudo-BCI-algebra, deductive system, periodic part
@article{DMGAA_2015_35_2_a2,
     author = {Dymek, Grzegorz},
     title = {On a periodic part of {pseudo-BCI-algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {139--157},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a2/}
}
TY  - JOUR
AU  - Dymek, Grzegorz
TI  - On a periodic part of pseudo-BCI-algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2015
SP  - 139
EP  - 157
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a2/
LA  - en
ID  - DMGAA_2015_35_2_a2
ER  - 
%0 Journal Article
%A Dymek, Grzegorz
%T On a periodic part of pseudo-BCI-algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2015
%P 139-157
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a2/
%G en
%F DMGAA_2015_35_2_a2
Dymek, Grzegorz. On a periodic part of pseudo-BCI-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 139-157. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a2/

[1] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187-190.

[2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73-90.

[3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014), 167-187.

[4] G. Dymek, On a period of an element of pseudo-BCI-algebras, Discuss. Math. Gen. Algebra Appl., to appear..

[5] G. Dymek, On pseudo-BCI-algebras, Ann. Univ. Mariae Curie-Skłodowska Sect. A, to appear..

[6] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012), 461-474.

[7] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE,Bucharest, 2008..

[8] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29. doi: 10.3792/pja/1195522171

[9] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39-46.