Semigroups derived from (Γ,n)-semihypergroups and T-functor
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 1, pp. 79-95.

Voir la notice de l'article provenant de la source Library of Science

The main purpose of this paper is to introduce the concept of (Γ,n)-semihypergroups as a generalization of hypergroups, as a generalization of n-ary hypergroups and obtain an exact covariant functor between the category (Γ,n)-semihypergrous and the category semigroups. Moreover, we introduce and study complete part. Finally, we obtain some new results and some fundamental theorems in this respect.
Keywords: (Γ,n)-semihypergroup, Θ-relation, T-fuctor, fundamental semigroup
@article{DMGAA_2015_35_1_a6,
     author = {Ostadhadi-Dehkordi, S.},
     title = {Semigroups derived from {(\ensuremath{\Gamma},n)-semihypergroups} and {T-functor}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {79--95},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a6/}
}
TY  - JOUR
AU  - Ostadhadi-Dehkordi, S.
TI  - Semigroups derived from (Γ,n)-semihypergroups and T-functor
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2015
SP  - 79
EP  - 95
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a6/
LA  - en
ID  - DMGAA_2015_35_1_a6
ER  - 
%0 Journal Article
%A Ostadhadi-Dehkordi, S.
%T Semigroups derived from (Γ,n)-semihypergroups and T-functor
%J Discussiones Mathematicae. General Algebra and Applications
%D 2015
%P 79-95
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a6/
%G en
%F DMGAA_2015_35_1_a6
Ostadhadi-Dehkordi, S. Semigroups derived from (Γ,n)-semihypergroups and T-functor. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 1, pp. 79-95. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a6/

[1] W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (3) (1966) 411-422. doi: 10.2140/pjm.1966.18.411

[2] C. Berge, Graphes et Hypergraphes (Dunod, Paris, 1970).

[3] P. Corsini, Prolegomena of Hypergroup Theory, Second Edition (Aviani Editore, 1993).

[4] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic Publishers (Dordrecht, 2003). doi: 10.1007/978-1-4757-3714-1

[5] S.O. Dehkordi and B. Davvaz, A Strong Regular Relation on Γ-Semihyperrings, J. Sci. I.R. Iran. 22 (3) (2011) 257-266.

[6] S.O. Dehkordi and B. Davvaz, Γ-semihyperrings: Approximations and rough ideals, Bull. Malays. Math. Sci. Soc. 35 (2) (2012) 1035-1047.

[7] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications (International Academic Press USA, 2007).

[8] B. Davvaz and T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol. Trans. A 30 (A2) (2006) 165-174. doi: 10.1080/00927870802466835

[9] B. Davvaz, W.A. Dudek and T. Vougiouklis, A generalization of n-ary algebraic systems, Comm. Algebra 37 (2009) 1248-1263. doi: 10.1007/BF01180515

[10] W. Dörnte, Unterschungen uber einen verallgemeinerten gruppenbegriff, Math. Z. 29 (1929) 1-19. doi: 10.1007/BF01180515

[11] W.A. Dudek and K. Glazek, Around the Hosszu Gluskin theorem for n-ary groups, Discrete Math. 308 (2008) 4861-4876. doi: 10.1016/j.disc.2007.09.005

[12] W. A. Dudek and I. Grozdzinska On ideals in regular n-semigroups, Mat. Bilten 29 (1980), 29-30.

[13] D. Heidari, S.O. Dehkordi and B. Davvaz, Γ-Semihypergroups and their properties, U.P.B. Sci. Bull. (A) 72 (2010) 197-210.

[14] S. Kyuno, On prime Γ-rings, Pacific J. Math. 75 (1) (1978) 185-190. doi: 10.2140/pjm.1978.75.185

[15] J. Luh, On the theory of simple Γ-rings, Michigan Math. J. 16 (1969) 65-75. doi: 10.1307/mmj/1029000167

[16] F. Marty, Sur une generalization de la notion de group, 8th Congres Math. Scandinaves (1934), 45-49.

[17] M.K. Sen, On Γ-semigroups, Proc. of the Int. Conf. on Algebra and it's Appl. (1981) 301-308. New York, Decker Publication.

[18] M.K. Sen and N.K. Saha, On Γ-semigroup, I. Bull. Cal. Math. Soc. 78 (1986) 180-186.