Holomorph of generalized Bol loops II
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 1, pp. 59-78.

Voir la notice de l'article provenant de la source Library of Science

The notion of the holomorph of a generalized Bol loop (GBL) is characterized afresh. The holomorph of a right inverse property loop (RIPL) is shown to be a GBL if and only if the loop is a GBL and some bijections of the loop are right (middle) regular. The holomorph of a RIPL is shown to be a GBL if and only if the loop is a GBL and some elements of the loop are right (middle) nuclear. Necessary and sufficient conditions for the holomorph of a RIPL to be a Bol loop are deduced. Some algebraic properties and commutative diagrams are established for a RIPL whose holomorph is a GBL.
Keywords: generalized Bol loop, holomorph of a loop
@article{DMGAA_2015_35_1_a5,
     author = {Ja{\'\i}y\'eiọl\'a, T\`em{\'\i}tọ́pẹ́ and Popoola, Bolaji},
     title = {Holomorph of generalized {Bol} loops {II}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {59--78},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a5/}
}
TY  - JOUR
AU  - Jaíyéiọlá, Tèmítọ́pẹ́
AU  - Popoola, Bolaji
TI  - Holomorph of generalized Bol loops II
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2015
SP  - 59
EP  - 78
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a5/
LA  - en
ID  - DMGAA_2015_35_1_a5
ER  - 
%0 Journal Article
%A Jaíyéiọlá, Tèmítọ́pẹ́
%A Popoola, Bolaji
%T Holomorph of generalized Bol loops II
%J Discussiones Mathematicae. General Algebra and Applications
%D 2015
%P 59-78
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a5/
%G en
%F DMGAA_2015_35_1_a5
Jaíyéiọlá, Tèmítọ́pẹ́; Popoola, Bolaji. Holomorph of generalized Bol loops II. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 1, pp. 59-78. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a5/

[1] J.O. Adeniran, The Study of Properties of Certain Class of Loops via their Bryant-Schneider Group (Ph.D. thesis, University of Agriculture, Abeokuta, 2002).

[2] J.O. Adeniran, On Generalised Bol loop Identity and Related Identities (M.Sc. thesis, Obafemi Awolowo University, Ile-Ife, 1997).

[3] J.O. Adeniran, On holomorphic theory of a class of left Bol loops, Scientific Annal of A.I.I Cuza Univ. 51 (2005) 23-28.

[4] J.O. Adeniran and S.A. Akinleye, On some loops satisfying the generalised Bol identity, Nig. Jour. Sc. 35 (2001) 101-107.

[5] J.O. Adeniran, T.G. Jaiyeola and K.A. Idowu, Holomorph of generalized Bol loops, Novi Sad Journal of Mathematics 44 (2014) 37-51.

[6] J.O. Adeniran and A.R.T. Solarin, A note on automorphic inverse property loops, Zbornik Radfova, Coll. of Sci. papers 20 (1997) 47-52.

[7] J.O. Adeniran and A.R.T. Solarin, A note on generalised Bol Identity, Scientific Annal of A.I.I Cuza Univ. 45 (1999) 19-26.

[8] N. Ajmal, A generalisation of Bol loops, Ann. Soc. Sci. Bruxelles Ser. 1 92 (1978) 241-248.

[9] V. Belousov, The Foundations of the Theory of Quasigroups and Loops (Moscow, Nauka (Russian), 1967).

[10] W. Blaschke and G. Bol, Geometric der Gewebe (Springer Verlags, 1938).

[11] G. Bol, Gewebe and Gruppen, Math. Ann. 144 (1937) 414-431.

[12] R.H. Bruck, Contributions to the theory of Loops, Trans. Amer. Soc. 55 (1944) 245-354. doi: 10.1090/s0002-9947-1946-0017288-3.

[13] R.H. Bruck, A survey of binary systems (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1971). doi: 10.1007/978-3-662-43119-1.

[14] R.H. Bruck and L.J. Paige, Loops whose inner mappings are automorphisms, The Annals of Mathematics 63 (1956) 308-323. doi: 10.2307/1969612.

[15] R.P. Burn, Finite Bol loops, Math. Proc. Camb. Phil. Soc. 84 (1978) 377-385. doi: 10.1017/s0305004100055213.

[16] R.P. Burn, Finite Bol loops II, Math. Proc. Camb. Phil. Soc. 88 (1981) 445-455. doi: 10.1017/s0305004100058357.

[17] R.P. Burn, Finite Bol loops III, Math. Proc. Camb. Phil. Soc. 97 (1985) 219-223. doi: 10.1017/s0305004100062770.

[18] B.F. Bryant and H. Schneider, Principal loop-isotopes of quasigroups, Canad. J. Math. 18 (1966) 120-125. doi: 10.4153/cjm-1966-016-8.

[19] O. Chein and E.G. Goodaire, Bol loops with a large left nucleus, Comment. Math. Univ. Carolin. 49 (2008) 171-196.

[20] O. Chein and E.G. Goodaire, Bol loops of nilpotence class two, Canad. J. Math. 59 296-310. doi: 10.4153/cjm-2007-012-7.

[21] O. Chein and E.G. Goodaire, A new construction of Bol loops: the 'odd' case, Quasigroups and Related Systems 13 (2005) 87-98.

[22] V.O. Chiboka, The Bryant-Schneider group of an extra loop, Collection of Scientific papers of the Faculty of Science, Kragujevac 18 (1996) 9-20.

[23] V.O. Chiboka and A.R.T. Solarin, Holomorphs of conjugacy closed loops, Scientific Annals of Al.I. Cuza. Univ. 37 (1991) 277-284.

[24] T. Foguel, M.K. Kinyon and J.D. Phillips, On twisted subgroups and Bol loops of odd order, Rocky Mountain J. Math. 36 (2006) 183-212. doi: 10.1216/rmjm/1181069494.

[25] E.D. Huthnance Jr., A theory of generalised Moufang loops (Ph.D. thesis, Georgia Institute of Technology, 1968).

[26] T.G. Jaiyeola, A study of new concepts in smarandache quasigroups and loops (ProQuest Information and Learning(ILQ), Ann Arbor, USA, 2009).

[27] M.K. Kinyon and J.D. Phillips, Commutants of Bol loops of odd order, Proc. Amer. Math. Soc. 132 (2004) 617-619.

[28] M.K. Kinyon, J.D. Phillips and P. Vojtěchovský, When is the commutant of a Bol loop a subloop?, Trans. Amer. Math. Soc. 360 (2008) 2393-2408. doi: 10.1090/s0002-9947-07-04391-7.

[29] R. Moufang, Zur Struktur von Alterntivkorpern, Math. Ann. 110 (1935) 416-430.

[30] G.P. Nagy, A class of finite simple Bol loops of exponent 2, Trans. Amer. Math. Soc. 361 (2009) 5331-5343. doi: 10.1090/s0002-9947-09-04646-7.

[31] G.P. Nagy, A class of simple proper Bol loop, Manuscripta Mathematica 127 (2008) 81-88. doi: 10.1007/s00229-008-0188-5.

[32] G.P. Nagy, Some remarks on simple Bol loops, Comment. Math. Univ. Carolin. 49 (2008) 259-270.

[33] D.A. Robinson, Bol loops (Ph.D thesis, University of Wisconsin, Madison, 1964).

[34] D.A. Robinson, Holomorphic theory of extra loops, Publ. Math. Debrecen 18 (1971) 59-64.

[35] D.A. Robinson, The Bryant-Schneider group of a loop, Extract Des Ann. De la Sociiét é Sci. De Brucellaes 94 (1980) 69-81.

[36] B.L. Sharma, Left loops which Satisfy the left Bol identity, Proc. Amer. Math. Soc 61 (1976) 189-195. doi: 10.1090/s0002-9939-1976-0422480-4.

[37] B.L. Sharma, Left Loops which satisfy the left Bol identity (II), Ann. Soc. Sci. Bruxelles, Sér. I 91 (1977) 69-78.

[38] B.L. Sharma and L.V. Sabinin L.V., On the Algebraic properties of half Bol Loops, Ann. Soc. Sci. Bruxelles Sér. I 93 (1979) 227-240.

[39] B.L. Sharma and L.V. Sabinin, On the existence of Half Bol loops, Scientific Annal of A.I.I Cuza Univ. 22 (1976) 147-148.

[40] A.R.T. Solarin and B.L. Sharma, On the Construction of Bol loops, Scientific Annal of A.I.I Cuza Univ. 27 (1981) 13-17.

[41] A.R.T. Solarin and B.L. Sharma, Some examples of Bol loops, Acta Carol, Math. and Phys. 25 (1984) 59-68.

[42] A.R.T. Solarin and B.L. Sharma, On the Construction of Bol loops II, Scientific Annal of A.I.I Cuza Univ. 30 (1984) 7-14.

[43] A.R.T. Solarin, Characterization of Bol loops of small orders (Ph.D. Dissertation, Universiy of Ife, 1986).

[44] A.R.T. Solarin, On the Identities of Bol Moufang Type, Kyungpook Math. 28 (1988) 51-62.