Complicated BE-algebras and characterizations of ideals
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 1, pp. 41-51.

Voir la notice de l'article provenant de la source Library of Science

In this paper, using the notion of upper sets, we introduced the notions of complicated BE-Algebras and gave some related properties on complicated, self-distributive and commutative BE-algebras. In a self-distributive and complicated BE-algebra, characterizations of ideals are obtained.
Keywords: BE-algebras, complicated BE-algebras, ideals in BE-algebras
@article{DMGAA_2015_35_1_a3,
     author = {\c{C}even, Y{\i}lmaz and \c{C}ilo\u{g}lu, Zekiye},
     title = {Complicated {BE-algebras} and characterizations of ideals},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {41--51},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a3/}
}
TY  - JOUR
AU  - Çeven, Yılmaz
AU  - Çiloğlu, Zekiye
TI  - Complicated BE-algebras and characterizations of ideals
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2015
SP  - 41
EP  - 51
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a3/
LA  - en
ID  - DMGAA_2015_35_1_a3
ER  - 
%0 Journal Article
%A Çeven, Yılmaz
%A Çiloğlu, Zekiye
%T Complicated BE-algebras and characterizations of ideals
%J Discussiones Mathematicae. General Algebra and Applications
%D 2015
%P 41-51
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a3/
%G en
%F DMGAA_2015_35_1_a3
Çeven, Yılmaz; Çiloğlu, Zekiye. Complicated BE-algebras and characterizations of ideals. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 1, pp. 41-51. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a3/

[1] J.C. Abbott, Sets, Lattices and Boolean Algebras (Allyn and Bacon, Boston, 1969).

[2] S.S. Ahn and K.K. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn. 68 (2) (2008) 279-285.

[3] S.S. Ahn and K.K. So, On generalized upper sets in BE-algebras, Bull. Korean Math. Soc. 46 (2) (2009) 281-287. doi: 10.4134/BKMS.2009.46.2.281

[4] S.S. Ahn, Y.H. Kim and J.M. Ko, Filters in commutative BE-algebras, Commun. Korean Math. Soc. 27 (2) (2012) 233-242. doi: 10.4134/CKMS.2012.27.2.233

[5] Q.P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11 (2) (1983) 313-320.

[6] Q.P. Hu and X. Li, On proper BCH-algebras, Math. Japon. 30 (4) (1985) 659-661.

[7] J. Meng and Y.B. Jun, BCK-algebras (Kyung Moon Sa Co. Seoul-Korea, 1994).

[8] Y. Imai and K. Iseki, On axiom system of propositional calculi XIV, Proc. Japan Acad. 42 (1966) 19-22. doi: 10.3792/pja/1195522169

[9] K. Isėki and S. Tanaka, An introduction to the theory of BCK-Algebras, Math. Japon 23 (1) (1978/79) 1-26.

[10] K. Isėki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980) 125-130.

[11] Y.B. Jun, E.H. Roh and H.S. Kim, On BH-algebras, Sci. Math. Japon. 1 (3) (1998) 347-354.

[12] Y.B. Jun, Y.H. Kim and K.A. Oh, Subtraction algebras with additional conditions, Commun. Korean Math. Soc. 22 (2007) 1-7.

[13] C.B. Kim and H.S. Kim, On BM-algebras, Sci. Math. Japon 63 (3) (2006) 421-427.

[14] H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Japon 66 (2007) 113-116.

[15] H.S. Kim and Y.H. Yon, Dual BCK-algebra and MV-algebra, Sci. Math. Jpn. 66 (2) (2007) 247-353.

[16] J. Neggers and H.S. Kim, On d-algebras, Math. Slovaca 49 (1999) 19-26.

[17] J. Neggers, On B-algebras, Mat. Vesnik 54 (1-2) (2002) 21-29.

[18] J. Neggers, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (3) (2002) 215-219.

[19] B.M. Schein, Difference Semigroups, Comm. Algebra 20 (1992) 2153-2169. doi: 10.1080/00927879208824453

[20] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56 (3) (2006) 301-306.

[21] A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. 69 (2) (2009) 281-284.

[22] B. Zelinka, Subtaction Semigroups, Math. Bohemica 120 (1995) 445-447.