Enumeration of Γ-groups of finite order
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 1, pp. 33-39.

Voir la notice de l'article provenant de la source Library of Science

The concept of Γ-semigroups is a generalization of semigroups. In this paper, we consider Γ-groups and prove that every Γ-group is derived from a group then, we give the number of Γ-groups of small order.
Keywords: Γ-semigroup, Γ-group
@article{DMGAA_2015_35_1_a2,
     author = {Heidari, Dariush and Amooshahi, Marzieh},
     title = {Enumeration of {\ensuremath{\Gamma}-groups} of finite order},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {33--39},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a2/}
}
TY  - JOUR
AU  - Heidari, Dariush
AU  - Amooshahi, Marzieh
TI  - Enumeration of Γ-groups of finite order
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2015
SP  - 33
EP  - 39
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a2/
LA  - en
ID  - DMGAA_2015_35_1_a2
ER  - 
%0 Journal Article
%A Heidari, Dariush
%A Amooshahi, Marzieh
%T Enumeration of Γ-groups of finite order
%J Discussiones Mathematicae. General Algebra and Applications
%D 2015
%P 33-39
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a2/
%G en
%F DMGAA_2015_35_1_a2
Heidari, Dariush; Amooshahi, Marzieh. Enumeration of Γ-groups of finite order. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 1, pp. 33-39. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a2/

[1] E. Alkan, On the enumeration of finite abelian and solvable groups, J. Number Theory 101 (2003) 404-423. doi: 10.1016/s0022-314x(03)00055-6.

[2] S.M. Anvariyeh, S. Mirvakili and B. Davvaz, On Γ-hyperideals in Γ-semihypergroups, Carpathian J. 26 (2010) 11-23.

[3] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups (American Mathematical Society, 1967).

[4] A. Cayley, On the theory of groups, as depending on the symbolic equation θⁿ = 1, Phil. Mag. 7 (1854) 40-47.

[5] T.K. Dutta and N.C. Adhikary, On Γ-semigroup with right and left unities, Soochow J. of Math. 19(4) (1993) 461-474.

[6] T.K. Dutta and N.C. Adhikari, On Noetherian Γ-semigroup, Kyungpook Math. J. 36 (1996) 89-95.

[7] P. Erdös, Some asymptotic formulas in number theory, J. Indian Math. Soc. 12 (1948) 75-78.

[8] D. Heidari, S.O. Dehkordi and B. Davvaz, Γ-Semihypergroups and their properties, U.P.B. Sci. Bull., Series A 72(1) (2010) 197-210.

[9] D. Heidari and B. Davvaz, Γ-hypergroups and Γ-Semihypergroups associated to binary relations, Iran. J. Sci. Technol. Trans. A Sci. A2 (2011) 69-80.

[10] D. Heidari and M. Amooshahi, Transformation semigroups associated to Γ-semigroups, Discuss. Math. Gen. Algebra Appl. 33(2) (2013) 249-259. doi: 10.7151/dmgaa.1024.

[11] A. Ivić, On the number of abelian groups of a given order and on certain related multiplicative functions, J. Number Theory 16 (1983) 119-137. doi: 10.1016/0022-314x(83)90037-9.

[12] L. Rédei, Das scheife Produkt in der Gruppentheorie, Comment. Math. Helv. 20 (1947) 225-264. doi: 10.1007/bf02568131.

[13] N.K. Saha, On Γ-semigroup II, Bull. Cal. Math. Soc. 79 (1987) 331-335.

[14] M.K. Sen, On Γ-semigroups, in: Proc. of the Int. Conf. on Algebra and it's Appl, Decker Publication (Ed(s)), (New York, 1981).

[15] M.K. Sen and N.K. Saha, On Γ-semigroup I, Bull. Cal. Math. Soc. 78 (1986) 180-186. doi: 10.1090/s0002-9904-1944-080095-6.

[16] A. Seth, Γ-group congruences on regular Γ-semigroups, Internat. J. Math. Math. Sci. (1992) 103-106. doi: 10.1155/so161171292000115.

[17] M. Siripitukdet and A. Iampan, On the Ideal Extensions in Γ-semigroups, Kyungpook Math. J. 48 (2008) 585-591. doi: 10.5666/kmj.2008.48.4.585.

[18] T. Szele, Über die endichen ordnungszahlen, zu denen nur eine gruppe gehört, Comment. Math. Helv. 20 (1947) 265-267. doi: 10.1007/bf02568132.

[19] R. Warlimont, On the set of natural numbers which only yield orders of abelian groups, J. Number Theory 20 (1985) 354-362. doi: 10.1016/0022-314x(85)90026-5.