On a period of elements of pseudo-BCI-algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 1, pp. 21-31.

Voir la notice de l'article provenant de la source Library of Science

The notions of a period of an element of a pseudo-BCI-algebra and a periodic pseudo-BCI-algebra are defined. Some of their properties and characterizations are given.
Keywords: pseudo-BCI-algebra, period
@article{DMGAA_2015_35_1_a1,
     author = {Dymek, Grzegorz},
     title = {On a period of elements of {pseudo-BCI-algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {21--31},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a1/}
}
TY  - JOUR
AU  - Dymek, Grzegorz
TI  - On a period of elements of pseudo-BCI-algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2015
SP  - 21
EP  - 31
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a1/
LA  - en
ID  - DMGAA_2015_35_1_a1
ER  - 
%0 Journal Article
%A Dymek, Grzegorz
%T On a period of elements of pseudo-BCI-algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2015
%P 21-31
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a1/
%G en
%F DMGAA_2015_35_1_a1
Dymek, Grzegorz. On a period of elements of pseudo-BCI-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 1, pp. 21-31. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a1/

[1] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008) 187-190.

[2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012) 73-90.

[3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014) 167-187.

[4] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012) 461-474.

[5] G. Dymek and A. Kozanecka-Dymek, Pseudo-BCI-logic, Bull. Sect. Logic 42 (2013) 33-42.

[6] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS'01: Combinatorics, Computability and Logic (Springer, London, 2001), 97-114.

[7] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000 (Slovakia, February 2000), 90-92.

[8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, (Bucharest, Romania, May, 1999), 961-968.

[9] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE (Bucharest, 2008).

[10] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26-29. doi: 10.3792/pja/1195522171

[11] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006) 39-46.