Relative determinant of a bilinear module
Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 2, pp. 203-212.

Voir la notice de l'article provenant de la source Library of Science

The aim of the paper is to generalize the (ultra-classical) notion of the determinant of a bilinear form to the class of bilinear forms on projective modules without assuming that the determinant bundle of the module is free. Successively it is proved that this new definition preserves the basic properties, one expects from the determinant. As an example application, it is shown that the introduced tools can be used to significantly simplify the proof of a recent result by B. Rothkegel.
Keywords: determinant, bilinear forms, projective modules
@article{DMGAA_2014_34_2_a5,
     author = {Koprowski, Przemys{\l}aw},
     title = {Relative determinant of a bilinear module},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {203--212},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a5/}
}
TY  - JOUR
AU  - Koprowski, Przemysław
TI  - Relative determinant of a bilinear module
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2014
SP  - 203
EP  - 212
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a5/
LA  - en
ID  - DMGAA_2014_34_2_a5
ER  - 
%0 Journal Article
%A Koprowski, Przemysław
%T Relative determinant of a bilinear module
%J Discussiones Mathematicae. General Algebra and Applications
%D 2014
%P 203-212
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a5/
%G en
%F DMGAA_2014_34_2_a5
Koprowski, Przemysław. Relative determinant of a bilinear module. Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 2, pp. 203-212. http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a5/

[1] M. Ciemała and K. Szymiczek, On the existence of nonsingular bilinear forms on projective modules, Tatra Mt. Math. Publ. 32 (2005) 1-13.

[2] O. Goldman, Determinants in projective modules, Nagoya Math. J. 18 (1961) 27-36.

[3] M.A. Marshall, Bilinear forms and orderings on commutative rings, volume~71 of Queen's Papers in Pure and Applied Mathematics (Queen's University, Kingston, ON, 1985).

[4] J. Milnor and D. Husemoller, Symmetric bilinear forms (Springer-Verlag, New York, 1973).

[5] H.P. Petersson, Polar decompositions of quaternion algebras over arbitrary rings, preprint, 2008. http://www.fernuni-hagen.de/petersson/download/polar-quat-l.pdf

[6] B. Rothkegel, Nonsingular bilinear forms on direct sums of ideals, Math. Slovaca 63(4) (2013) 707-724. doi: 10.2478/s12175-013-0130-5.

[7] C.A. Weibel, The K-book. An introduction to algebraic K-theory. volume 145 of Graduate Studies in Mathematics (American Mathematical Society, Providence, 2013).