Some properties of the zero divisor graph of a commutative ring
Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 2, pp. 167-181

Voir la notice de l'article provenant de la source Library of Science

Let Γ(R) be the zero divisor graph for a commutative ring with identity. The k-domination number and the 2-packing number of Γ(R), where R is an Artinian ring, are computed. k-dominating sets and 2-packing sets for the zero divisor graph of the ring of Gaussian integers modulo n, Γ(ℤₙ[i]), are constructed. The center, the median, the core, as well as the automorphism group of Γ(ℤₙ[i]) are determined. Perfect zero divisor graphs Γ(R) are investigated.
Keywords: automorphism group of a graph, center of a graph, core of a graph, k-domination number, Gaussian integers modulo n, median of a graph, 2-packing, perfect graph, and zero divisor graph
@article{DMGAA_2014_34_2_a2,
     author = {Nazzal, Khalida and Ghanem, Manal},
     title = {Some properties of the zero divisor graph of a commutative ring},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {167--181},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a2/}
}
TY  - JOUR
AU  - Nazzal, Khalida
AU  - Ghanem, Manal
TI  - Some properties of the zero divisor graph of a commutative ring
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2014
SP  - 167
EP  - 181
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a2/
LA  - en
ID  - DMGAA_2014_34_2_a2
ER  - 
%0 Journal Article
%A Nazzal, Khalida
%A Ghanem, Manal
%T Some properties of the zero divisor graph of a commutative ring
%J Discussiones Mathematicae. General Algebra and Applications
%D 2014
%P 167-181
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a2/
%G en
%F DMGAA_2014_34_2_a2
Nazzal, Khalida; Ghanem, Manal. Some properties of the zero divisor graph of a commutative ring. Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 2, pp. 167-181. http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a2/