Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2014_34_2_a2, author = {Nazzal, Khalida and Ghanem, Manal}, title = {Some properties of the zero divisor graph of a commutative ring}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {167--181}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a2/} }
TY - JOUR AU - Nazzal, Khalida AU - Ghanem, Manal TI - Some properties of the zero divisor graph of a commutative ring JO - Discussiones Mathematicae. General Algebra and Applications PY - 2014 SP - 167 EP - 181 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a2/ LA - en ID - DMGAA_2014_34_2_a2 ER -
%0 Journal Article %A Nazzal, Khalida %A Ghanem, Manal %T Some properties of the zero divisor graph of a commutative ring %J Discussiones Mathematicae. General Algebra and Applications %D 2014 %P 167-181 %V 34 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a2/ %G en %F DMGAA_2014_34_2_a2
Nazzal, Khalida; Ghanem, Manal. Some properties of the zero divisor graph of a commutative ring. Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 2, pp. 167-181. http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a2/
[1] E. Abu Osba, The Complement graph for Gaussian integers modulo n, Commun. Algebra 40 (5), (2012) 1886-1892. doi: 10.1080/00927872.2011.560588
[2] E. Abu Osba, S. Al-Addasi and N. Abu Jaradeh, Zero divisor graph for the ring of Gaussian integers modulo n, Commun. Algebra 36 (10) (2008) 3865-3877. doi: 10.1080/00927870802160859
[3] E. Abu Osba, S. Al-Addasi and B. Al-Khamaiseh, Some properties of the zero divisor graph for the ring of Gaussian integers modulo n, Glasgow J. Math. 53 (1) (2011) 391-399. doi: 10.1017/S0017089511000024
[4] S. Akbari and A. Mohamamadaian, On the zero divisor graph of a commutative ring, J. Algebra 274 (2004) 847-855. doi: 10.1016/S0021-8693(03)00435-6
[5] D.F. Anderson, M.C. Axtell and J.A. Stickles, Zero-divisor graphs in commutative rings, Commutative Algebra in Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), Springer-Verlag, New York (2011), 2345.
[6] D.F. Anderson and A.D. Badawi, On the zero-divisor graph of a ring, Commun. Algebra 36 (2008) 3073-3092. doi: 10.1080/0092787080211088
[7] D.F. Anderson, A. Frazier, A. Lauve and P.S. Livingston, The zero divisor graph of a commutative ring II, Lecture notes in Pure and Appl. Math., New Yourk, Marcel Dekker 220 (2001) 61-72.
[8] D.F. Anderson and P.S. Livingston, The zero divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447. doi: 10.1006/jabr.1998.7840
[9] S. Arumugam and S. Velammal, Edge domination in graphs, Taiwanese J. Math. 2 (2) (1998) 173-179.
[10] V.K. Bahat and R. Raina, A note on zero divisor graph over rings, Int. J. Contemp. Math. Sci. 14 (2) (2007) 667-671.
[11] J. Beck, Coloring of Commutative rings, J. Algebra 116 (1988) 208-226. doi: 10.1016/0021-8693(88)90202-5
[12] C. Berge, Fäbung von Graphen, deren s Fäamtliche bzw. Deren ungerade Kreise starr sind, Wiss, Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe (1961) 114-115.
[13] G. Chartrand and L. Leśniak, Graphs and Digraphs, 2 ed., Wadsworth and Brooks (Monterey, California, 1986).
[14] H. Chiang-Hsieh, H. Wang and N. Smith, Commutative rings with toroidal zero-divisor graphs, Houston J. Math. 36 (1) (2010) 1-31.
[15] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (1) (2006) 51-229. doi: 10.4007/annals.2006.164.51
[16] N. Cordova, C. Gholston and H. Hauser, The Structure of Zero-divisor Graphs (Sumsri, Miami University, 2005).
[17] M. El-Zahar and C. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991) 223-227.
[18] M. Ghanem and K. Nazzal, On the line graph of the complement graph for the ring of Gaussian integers modulo n, Open J. Disc. Math. 2 (1) (2012) 24-34.
[19] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamental of Domination in Graphs (Marcel Dekker, New York, 1998).
[20] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, Inc. (New York, 1998).
[21] R.B. Hayward, Murky graphs, J. Combin. Theory (B) 49 (1990) 200-235.
[22] Ph.S. Livingston, Structure in Zero-Divisor Graphs of Commutative Rings, Masters Theses, University of Tennessee (Knoxville, 1997).
[23] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Disc. Math. 2 (1972) 253-267.
[24] T.F. Maire, Slightly triangulated graphs are perfect, Graphs Combin. 10 (1994) 263-268.
[25] K. Nazzal and M. Ghanem, On the line graph of the zero divisor graph for the ring of Gaussian integers modulo n, Int. J. Comb. (2012) 13 pages.
[26] S.P. Redmond, Central sets and Radii of the zero divisor graphs of commutative ring, Commun. Algebra 34 (2006) 2389-2401.