Jordan numbers, Stirling numbers and sums of powers
Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 2, pp. 155-166.

Voir la notice de l'article provenant de la source Library of Science

In the paper a new combinatorical interpretation of the Jordan numbers is presented. Binomial type formulae connecting both kinds of numbers mentioned in the title are given. The decomposition of the product of polynomial of variable n into the sums of kth powers of consecutive integers from 1 to n is also studied.
Keywords: Bernoulli numbers, binomial coefficients, Jordan numbers, Stirling numbers, Živković numbers
@article{DMGAA_2014_34_2_a1,
     author = {Witu{\l}a, Roman and Kaczmarek, Konrad and Lorenc, Piotr and Hetmaniok, Edyta and Pleszczy\'nski, Mariusz},
     title = {Jordan numbers, {Stirling} numbers and sums of powers},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {155--166},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a1/}
}
TY  - JOUR
AU  - Wituła, Roman
AU  - Kaczmarek, Konrad
AU  - Lorenc, Piotr
AU  - Hetmaniok, Edyta
AU  - Pleszczyński, Mariusz
TI  - Jordan numbers, Stirling numbers and sums of powers
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2014
SP  - 155
EP  - 166
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a1/
LA  - en
ID  - DMGAA_2014_34_2_a1
ER  - 
%0 Journal Article
%A Wituła, Roman
%A Kaczmarek, Konrad
%A Lorenc, Piotr
%A Hetmaniok, Edyta
%A Pleszczyński, Mariusz
%T Jordan numbers, Stirling numbers and sums of powers
%J Discussiones Mathematicae. General Algebra and Applications
%D 2014
%P 155-166
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a1/
%G en
%F DMGAA_2014_34_2_a1
Wituła, Roman; Kaczmarek, Konrad; Lorenc, Piotr; Hetmaniok, Edyta; Pleszczyński, Mariusz. Jordan numbers, Stirling numbers and sums of powers. Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 2, pp. 155-166. http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a1/

[1] Z.I. Borevich and I.R. Szafarevich, Number Theory (Nauka, Moscov, 1964, in Russian).

[2] L. Carlitz, Note on the numbers of Jordan and Ward, Duke Math. J. 38 (1971) 783-790. doi: 10.1215/S0012-7094-71-03894-4.

[3] L. Carlitz, Some numbers related to the Stirling numbers of the first and second kind, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976) 49-55.

[4] L. Carlitz, Some remarks on the Stirling numbers, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678-715 (1980) 10-14.

[5] K. Dilcher, Bernoulli and Euler Polynomials, 587-600 (in F.W.I. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge Univ. Press, 2010).

[6] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics (Addison-Wesley, Reading, 1994).

[7] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory (Springer, 1990). doi: 10.1007/978-1-4757-1779-2.

[8] C. Jordan, Calculus of Finite Differences (Chelsea, New York, 1960). doi: 10.2307/2333783.

[9] D.E. Knuth, Johann Faulhaber and sums of powers, Math. Comp. 203 (1993) 277-294. doi: 10.2307/2152953.

[10] N. Nielsen, Traité élémentaire des nombers de Bernoulli (Gauthier - Villars, Paris, 1923).

[11] S. Rabsztyn, D. Słota and R. Wituła, Gamma and Beta Functions, Part I (Silesian Technical University Press, Gliwice, 2011, in Polish).

[12] J. Riordan, An Introduction to Combinatorial Analysis (John Wiley, 1958). doi: 10.1063/1.3060724.

[13] J. Riordan, Combinatorial Identities (Wiley, New York, 1968).

[14] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences (http://oeis.org/).

[15] M. Živković, On a representation of Stirling's numbers of first kind, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 498-541 (1975) 217-221.