Some characterizations of 2-primal ideals of a Γ-semiring
Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 1, pp. 95-107.

Voir la notice de l'article provenant de la source Library of Science

This paper is a continuation of our previous paper entitled "On 2-primal Γ-semirings". In this paper we have introduced the notion of 2-primal ideal in Γ-semiring and studied it.
Keywords: Γ-semiring, nilpotent element, 2-primal Γ-semiring, 2-primal ideal, IFP (insertion of factor property), completely prime ideal, completely semiprime ideal
@article{DMGAA_2014_34_1_a6,
     author = {Dhara, Suhrid and Dutta, Tapan},
     title = {Some characterizations of 2-primal ideals of a {\ensuremath{\Gamma}-semiring}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a6/}
}
TY  - JOUR
AU  - Dhara, Suhrid
AU  - Dutta, Tapan
TI  - Some characterizations of 2-primal ideals of a Γ-semiring
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2014
SP  - 95
EP  - 107
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a6/
LA  - en
ID  - DMGAA_2014_34_1_a6
ER  - 
%0 Journal Article
%A Dhara, Suhrid
%A Dutta, Tapan
%T Some characterizations of 2-primal ideals of a Γ-semiring
%J Discussiones Mathematicae. General Algebra and Applications
%D 2014
%P 95-107
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a6/
%G en
%F DMGAA_2014_34_1_a6
Dhara, Suhrid; Dutta, Tapan. Some characterizations of 2-primal ideals of a Γ-semiring. Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a6/

[1] C. Selvaraj and S. Petchimuthu, Characterization of 2-Primal Γ-Rings, Southeast Asian Bull. Math. 34 (2010) 1083-1094.

[2] C. Selvaraj and S. Petchimuthu, Characterization of 2-primal ideals, Far East J. Math. Sci. 28 (2008) 249-256.

[3] G.F. Birkenmeier, H.E. Heatherly and E.K. Lee, Completely Prime Ideals and Associated Radicals, in: Proc. Biennial Ohio State-Denision Conference 1992, S.K. Jain and S.T. Rizvi (Ed(s)), (World Scientific, New Jersey, 1993) 102-129.

[4] M.M.K. Rao, Γ-semiring-I, Southeast Asian Bull. Math. 19 (1995) 49-54.

[5] M.M.K. Rao, Γ-semiring-II, Southeast Asian Bull. Math. 21 (1997) 281-287.

[6] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964) 81-89.

[7] P.J. Allen and W.R. Windham, Operator semigroup with applications to semiring, Publicationes Mathematicae 20 (1973) 161-175.

[8] S.K. Sardar, On Jacobson radical of a Γ-semiring, Far East J. Math. Sci. 35 (2005) 1-9.

[9] S.K. Sardar and U. Dasgupta, On primitive Γ-semiring, Far East J. Math. Sci. 34 (2004) 1-12.

[10] T.K. Dutta and S.K. Sardar, On prime ideals and prime radical of a Γ-semirings, ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII 'AL.I.CUZA' IAŞI, Matematică Tomul XLVI.s.I.a, f.2 (2000) 319-329.

[11] T.K. Dutta and S.K. Sardar, Semiprime ideals and irreducible ideals of Γ-semirings, Novi Sad J. Math. 30 (2000) 97-108.

[12] T.K. Dutta and S.K. Sardar, On the operator semirings of a Γ-semiring, Southeast Asian Bull. Math., Springer-Verlag 26 (2002) 203-213.

[13] T.K. Dutta and S.K. Sardar, On Levitzki radical of a Γ-semiring, Bull. Calcutta Math. Soc. 95 (2003) 113-120.

[14] T.K. Dutta and S. Dhara, On uniformly strongly prime Γ-semirings, Southeast Asian Bull. Math. 30 (2006) 39-48.

[15] T.K. Dutta and S. Dhara, On uniformly strongly prime Γ-semirings (II), Discuss. Math. General Algebra and Appl. 26 (2006) 219-231.

[16] T.K. Dutta and S. Dhara, On strongly prime Γ-semirings, ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII 'AL.I.CUZA' DIN IAŞI(S. N.) Matematică Tomul LV, f.1 (2009) 213-224.

[17] T.K. Dutta and S. Dhara, On 2-primal Γ-semirings, Southeast Asian Bull. Math. 37 (2013) 699-714.

[18] T.K. Dutta, K.P. Shum and S. Dhara, On NI Γ-semirings, Int. J. Pure and Appl. Math. 84 (2013) 279-298. doi: 10.12732/ijpam.v84i3.14.

[19] W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966) 411-422. doi: 10.2140/pjm.1966.18.411.