Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2014_34_1_a6, author = {Dhara, Suhrid and Dutta, Tapan}, title = {Some characterizations of 2-primal ideals of a {\ensuremath{\Gamma}-semiring}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {95--107}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a6/} }
TY - JOUR AU - Dhara, Suhrid AU - Dutta, Tapan TI - Some characterizations of 2-primal ideals of a Γ-semiring JO - Discussiones Mathematicae. General Algebra and Applications PY - 2014 SP - 95 EP - 107 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a6/ LA - en ID - DMGAA_2014_34_1_a6 ER -
Dhara, Suhrid; Dutta, Tapan. Some characterizations of 2-primal ideals of a Γ-semiring. Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a6/
[1] C. Selvaraj and S. Petchimuthu, Characterization of 2-Primal Γ-Rings, Southeast Asian Bull. Math. 34 (2010) 1083-1094.
[2] C. Selvaraj and S. Petchimuthu, Characterization of 2-primal ideals, Far East J. Math. Sci. 28 (2008) 249-256.
[3] G.F. Birkenmeier, H.E. Heatherly and E.K. Lee, Completely Prime Ideals and Associated Radicals, in: Proc. Biennial Ohio State-Denision Conference 1992, S.K. Jain and S.T. Rizvi (Ed(s)), (World Scientific, New Jersey, 1993) 102-129.
[4] M.M.K. Rao, Γ-semiring-I, Southeast Asian Bull. Math. 19 (1995) 49-54.
[5] M.M.K. Rao, Γ-semiring-II, Southeast Asian Bull. Math. 21 (1997) 281-287.
[6] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964) 81-89.
[7] P.J. Allen and W.R. Windham, Operator semigroup with applications to semiring, Publicationes Mathematicae 20 (1973) 161-175.
[8] S.K. Sardar, On Jacobson radical of a Γ-semiring, Far East J. Math. Sci. 35 (2005) 1-9.
[9] S.K. Sardar and U. Dasgupta, On primitive Γ-semiring, Far East J. Math. Sci. 34 (2004) 1-12.
[10] T.K. Dutta and S.K. Sardar, On prime ideals and prime radical of a Γ-semirings, ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII 'AL.I.CUZA' IAŞI, Matematică Tomul XLVI.s.I.a, f.2 (2000) 319-329.
[11] T.K. Dutta and S.K. Sardar, Semiprime ideals and irreducible ideals of Γ-semirings, Novi Sad J. Math. 30 (2000) 97-108.
[12] T.K. Dutta and S.K. Sardar, On the operator semirings of a Γ-semiring, Southeast Asian Bull. Math., Springer-Verlag 26 (2002) 203-213.
[13] T.K. Dutta and S.K. Sardar, On Levitzki radical of a Γ-semiring, Bull. Calcutta Math. Soc. 95 (2003) 113-120.
[14] T.K. Dutta and S. Dhara, On uniformly strongly prime Γ-semirings, Southeast Asian Bull. Math. 30 (2006) 39-48.
[15] T.K. Dutta and S. Dhara, On uniformly strongly prime Γ-semirings (II), Discuss. Math. General Algebra and Appl. 26 (2006) 219-231.
[16] T.K. Dutta and S. Dhara, On strongly prime Γ-semirings, ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII 'AL.I.CUZA' DIN IAŞI(S. N.) Matematică Tomul LV, f.1 (2009) 213-224.
[17] T.K. Dutta and S. Dhara, On 2-primal Γ-semirings, Southeast Asian Bull. Math. 37 (2013) 699-714.
[18] T.K. Dutta, K.P. Shum and S. Dhara, On NI Γ-semirings, Int. J. Pure and Appl. Math. 84 (2013) 279-298. doi: 10.12732/ijpam.v84i3.14.
[19] W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966) 411-422. doi: 10.2140/pjm.1966.18.411.