Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2014_34_1_a5, author = {Kannan, M. and Sivakumar, K.}, title = {Intervals of certain classes of {Z-matrices}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {85--93}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a5/} }
TY - JOUR AU - Kannan, M. AU - Sivakumar, K. TI - Intervals of certain classes of Z-matrices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2014 SP - 85 EP - 93 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a5/ LA - en ID - DMGAA_2014_34_1_a5 ER -
Kannan, M.; Sivakumar, K. Intervals of certain classes of Z-matrices. Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 1, pp. 85-93. http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a5/
[1] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences (SIAM, Philadelphia, 1994).
[2] R.W. Cottle, A field guide to the matrix classes found in the literature of the linear complementarity problem, J. Global Optim. 46 (2010) 571-580. doi: 10.1007/s10898-009-9441-z
[3] L. Hogben, Discrete Mathematics and Its Applications: Handbook of Linear Algebra (CRC Press, 2006).
[4] G.A. Johnson, A generalization of N-matrices, Linear Algebra Appl. 48 (1982) 201-217. doi: 10.1016/0024-3795(82)90108-2
[5] Ky Fan, Some matrix inequalities, Abh. Math. Sem. Univ. Hamburg 29 (1966) 185-196. doi: 10.1007/BF03016047
[6] A. Neumaier, Interval Methods for Systems of Equations, Encyclopedia of Mathematics and its Applications (Cambridge University Press, 1990).
[7] T. Parthasarathy and G. Ravindran, N-matrices, Linear Algebra Appl. 139 (1990) 89-102. doi: 10.1016/0024-3795(90)90390-X
[8] R. Smith and Shu-An Hu, Inequalities for monotonic pairs of Z-matrices, Lin. Mult. Alg. 44 (1998) 57-65. doi: 10.1080/03081089808818548
[9] R.S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics (Springer, New York, 2000).