Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2013_33_2_a8, author = {Ostrowski, Tadeusz}, title = {A note on semidirect sum of {Lie} algebras}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {233--247}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a8/} }
Ostrowski, Tadeusz. A note on semidirect sum of Lie algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 233-247. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a8/
[1] V.I. Arnold, Theorem on altitudes of a triangle in the Lobachevsky geometry as the Jacobi identity in the Lie algebras of quadratic forms in the simplectic plane, Math. Prosveschenie. Third Series 9 (2005), 93-99.
[2] M.R. Bremer, I.R. Hentzel and L.A. Peresi, Dimension formulas for the free nonassociative algebra, Communications in Algebra 33 (2005), 4063-4081. doi: 10.1080/00927870500261389
[3] H. Bass, J. Oesterle and A. Weinstein, Poisson Structures and Their Normal Forms (Birkhauser Basel, 2005). doi: 10.1007/b137493
[4] J.M. Ancochea Bermudez, R. Campoamor-Stursberg and L. Garcia Vergnolle, Indecomposable Lie algebras with nontrivial Levi decomposition cannot have filiform radical, Internat. Math. Forum 7 (2006), 309-316.
[5] R.W. Carter, Lie Algebras of Finite and Affine Type (Cambridge University Press, 2005). doi: 10.1017/CBO9780511614910
[6] K. Erdmann and M.J. Windon, Introduction to Lie Algebras (Springer-Verlag London, 2006).
[7] A. Figula and K. Strambach, Loops which are semidirect products of groups, Acta Mathematica Hungarica 114 (2007), 247-266. doi: 10.1007/s10474-006-0529-3
[8] E.A. de Kerf, G.A. Bauerle and A.P. Kroode, Lie Algebras, E. van Groesen, E.M. de Jager (Editors), Elsevier Science (1997).
[9] B.C. Hall, Lie Groups, Lie Algebras, and Representations (Springer-Verlag, NY, 2004).
[10] D.D. Holm, J.E. Marsden and T.S. Ratiu, The Euler-Poincare equations and semidirect products with applications to continuum theories, Advances in Mathematics 137 (1998), 1-81. doi: 10.1006/aima.1998.1721
[11] F. Iachello, Lie Algebras and Applications (Springer-Verlag, Berlin, Heidelberg, 2006).
[12] A. Kirillov, Jr., An Introduction to Lie Groups and Lie Algebras (Cambridge University Press, 2008). doi: 10.1017/CBO9780511755156
[13] J.E. Marsden, G. Misiolek, M. Perlmutter and T.S. Ratiu, Sympletic reduction for semidirect products and central extensions, Differential Geometry and its Applications 9 (1998), 173-212. doi: 10.1016/S0926-2245(98)00021-7
[14] E. Mundt, Constant Young-Mills potentials, Journal of Lie Theory 3 (1993), 107-115.
[15] A.L. Onishchik and E.B. Vinberg (Editors), Lie Groups and Lie Algebras (Springer, New York, 1994). doi: 10.1007/978-3-662-03066-0
[16] D.I. Panyushev, Semi-direct products of Lie algebras and their invariants, Publications of the Research Institute for Mathematical Sciences, Kyoto University 43 (2007), 1199-1257. doi: 10.2977/prims/1201012386
[17] V.M. Petrogradsky, Y.P. Razmyslov and E.O. Shishkin, Wreath products and Kaluzhnin-Krasner embedding for Lie algebras, Proc. Amer. Math. Soc. 135 (2007), 625-636. doi: 10.1090/S0002-9939-06-08502-9
[18] H. Samelson, Notes on Lie Algebras (Springer-Verlag Berlin and Heidelberg, 1990). doi: 10.1007/978-1-4613-9014-5
[19] V.I. Suhchansky and N.V. Netreba, Wreath product of Lie algebras and Lie algebras associated with Sylow p-subgroups of infinite symmetric groups, Algebra and Discrete Math. 1 (2005), 122-132.
[20] W.H. Steeb, Continuous Symmetries, Lie Algebras, Differential Equations and Computer Algebra (World Scientific Publishing Co., 2007). PMid:17361179
[21] D.H. Sattinger and O.L. Weaver, Lie groups and Algebras with Applications to Physics, Geometry and Mechanics (Springer-Verlag, 1993).
[22] V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations (Springer-Verlag, New York Inc., 1984). doi: 10.1007/978-1-4612-1126-6