Vague ideals of implication groupoids
Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 221-231.

Voir la notice de l'article provenant de la source Library of Science

We introduce the concept of vague ideals in a distributive implication groupoid and investigate their properties. The vague ideals of a distributive implication groupoid are also characterized.
Keywords: implication groupoids, distributive implication groupiods, vague ideals
@article{DMGAA_2013_33_2_a7,
     author = {Bandaru, Ravi and Shum, K.},
     title = {Vague ideals of implication groupoids},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {221--231},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a7/}
}
TY  - JOUR
AU  - Bandaru, Ravi
AU  - Shum, K.
TI  - Vague ideals of implication groupoids
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2013
SP  - 221
EP  - 231
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a7/
LA  - en
ID  - DMGAA_2013_33_2_a7
ER  - 
%0 Journal Article
%A Bandaru, Ravi
%A Shum, K.
%T Vague ideals of implication groupoids
%J Discussiones Mathematicae. General Algebra and Applications
%D 2013
%P 221-231
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a7/
%G en
%F DMGAA_2013_33_2_a7
Bandaru, Ravi; Shum, K. Vague ideals of implication groupoids. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 221-231. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a7/

[1] J.C. Abbott, Semi-boolean algebras, Mathematicki Vensik, 19 (4) (1976), 177-198. http://www.digizeitschriften.de/en/dms/img/?PPN=PPN311571026_0019=dmdlog47.

[2] P. Bhattacharya and N.P. Mukherjee, Fuzzy relations and fuzzy groups, Inform. Sci. 36 (1985), 267-282. doi: 10.1016/0020-0255(85)90057-X

[3] R. Biswas, Vague groups, International Journal of Computational Cognition 4 (2) (2006), 20-23. http://www.yangsky.com/ijcc/pdf/ijcc423.pdf

[4] I. Chajda and R. Hala, Congruences and ideals in Hilbert algebras, Kyungpook Math. J. 39 (1999), 429-432 (preprint).

[5] I. Chajda and R. Hala R, Distributive implicaiton groupoids, Central European Journal of Mathematics 5 (3) (2007), 484-492. doi: 10.2478/s11533-007-0021-5

[6] W.A. Dudek and Y.B. Jun, On fuzzy ideals in Hilbert algebras, Novi Sad J. Math. 29 (2) (1999), 193-207. ftp://ftp.gwdg.de/pub/EMIS/journals/NSJOM/Papers/29_2/NSJOM_29_2_193_207.pdf

[7] W.L. Gau and D.L. Buehrer, Vague sets, IEEE Transactions on systems-Man and Cybernetics 23 (1993), 610-614. doi: 10.1109/21.229476

[8] Y.B. Jun and S.M. Hong, On fuzzy deductive systems of Hilbert algebras, Indian Journal of Pure and Applied Mathematics 27 (2) (1996), 141-151. http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_2/20005a24_141.pdf.

[9] Y.B. Jun and C.H. Park, Vague ideals of subtraction algebra, International Mathematical Forum 2 (2007), 2919-2926. http://www.m-hikari.com/imf-password2007/57-60-2007/parkIMF57-60-2007-1.pdf.

[10] J.N. Mordeson and D.S. Malik, Fuzzy Commutative algebra, World Scientific Publishing Co. pvt. Ltd, Singapore, 1998. http://www.worldscientific.com/worldscibooks/10.1142/3929.

[11] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X