Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2013_33_1_a5, author = {Mondal, Tapas and Bhuniya, Anjan}, title = {On k-radicals of {Green's} relations in semirings with a semilattice additive reduct}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {85--93}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a5/} }
TY - JOUR AU - Mondal, Tapas AU - Bhuniya, Anjan TI - On k-radicals of Green's relations in semirings with a semilattice additive reduct JO - Discussiones Mathematicae. General Algebra and Applications PY - 2013 SP - 85 EP - 93 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a5/ LA - en ID - DMGAA_2013_33_1_a5 ER -
%0 Journal Article %A Mondal, Tapas %A Bhuniya, Anjan %T On k-radicals of Green's relations in semirings with a semilattice additive reduct %J Discussiones Mathematicae. General Algebra and Applications %D 2013 %P 85-93 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a5/ %G en %F DMGAA_2013_33_1_a5
Mondal, Tapas; Bhuniya, Anjan. On k-radicals of Green's relations in semirings with a semilattice additive reduct. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 85-93. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a5/
[1] A.K. Bhuniya, On the additively regular semirings, Ph.D Thesis, University of Calcutta, 2009.
[2] A.K. Bhuniya and K. Jana, Bi-ideals in k-regular and intra k-regular semirings, Discuss. Math. General Algebra and Applications 31 (2011) 5-25. ISSN 2084-0373
[3] A.K. Bhuniya and T.K. Mondal, Distributive lattice decompositions of semirings with a semilattice additive reduct, Semigroup Forum 80 (2010) 293-301. doi: 10.1007/s00233-009-9205-6
[4] A.K. Bhuniya and T.K. Mondal, Semirings which are distributive lattices of left k-Archimedean semirings, Semigroup Forum (to appear). ISSN 1432-2137
[5] A.K. Bhuniya and T.K. Mondal, Semirings which are distributive lattices of k-simple semirings, Southeast Asian Bulletin of Mathematics 36 (2012) 309-318. ISSN 0129-2021
[6] S. Bogdanović and M. Ćirić, A note on radicals of Green's relations, PU.M.A 7 (1996) 215-219. ISSN 1218-4586
[7] S. Bogdanović and M. Ćirić, A note on left regular semigroups Publ. Math. Debrecen 48 (3-4) (1996) 285-291. ISSN 0033-3883
[8] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups I, Amer. Math. Soc., 1977. ISBN 0-8218-0271-2
[9] A.H. Clifford, Semigroups admitting relative inverses, Ann. Math. 42 (1941) 1037-1049. ISSN 1939-0980
[10] U. Hebisch and H.J. Weinert, Semirings. Algebraic Theory and Applications in Computer Science (Singapore, World Scientific, 1998). ISBN 981-02-3601-8
[11] J.M. Howie, Fundamentals of semigroup theory (Clarendon, Oxford, 1995). Reprint in 2003. ISBN 0-19-851194-9
[12] G.L. Litvinov and V.P. Maslov, The Correspondence principle for idempotent calculus and some computer applications, in: Idempotency, J. Gunawardena (Editor), (Cambridge, Cambridge Univ. Press, 1998) 420-443.
[13] G.L. Litvinov, V.P. Maslov and A.N. Sobolevskii, Idempotent Mathematics and Interval Analysis, Preprint ESI 632, The Erwin Schrödinger International Institute for Mathematical Physics, Vienna, 1998; e-print: http://www.esi.ac.at and http://arXiv.org,math.Sc/9911126.
[14] T.K. Mondal, Distributive lattices of t-k-Archimedean semirings, Discuss. Math. General Algebra and Applications 31 (2011), 147-158. doi: 10.7151/dmgaa.1179
[15] T.K. Mondal and A.K. Bhuniya, Semirings which are distributive lattices of t-k-simple semirings, submitted.
[16] M.K. Sen and A.K. Bhuniya, On semirings whose additive reduct is a semilattice, Semigroup forum 82 (2011) 131-140. doi: 10.1007/s00233-010-9271-9
[17] L.N. Shevrin, Theory of epigroups I, Mat. Sbornic 185 (8) (1994) 129-160. ISSN 1468-4802
[18] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914-920. ISSN 1088-9485