On k-radicals of Green's relations in semirings with a semilattice additive reduct
Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 85-93.

Voir la notice de l'article provenant de la source Library of Science

We introduce the k-radicals of Green's relations in semirings with a semilattice additive reduct, introduce the notion of left k-regular (right k-regular) semirings and characterize these semirings by k-radicals of Green's relations. We also characterize the semirings which are distributive lattices of left k-simple subsemirings by k-radicals of Green's relations.
Keywords: k-radicals of Green's relations, left k-regular semiring, left k-simple semiring, distributive lattices of left k-simple semirings
@article{DMGAA_2013_33_1_a5,
     author = {Mondal, Tapas and Bhuniya, Anjan},
     title = {On k-radicals of {Green's} relations in semirings with a semilattice additive reduct},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {85--93},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a5/}
}
TY  - JOUR
AU  - Mondal, Tapas
AU  - Bhuniya, Anjan
TI  - On k-radicals of Green's relations in semirings with a semilattice additive reduct
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2013
SP  - 85
EP  - 93
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a5/
LA  - en
ID  - DMGAA_2013_33_1_a5
ER  - 
%0 Journal Article
%A Mondal, Tapas
%A Bhuniya, Anjan
%T On k-radicals of Green's relations in semirings with a semilattice additive reduct
%J Discussiones Mathematicae. General Algebra and Applications
%D 2013
%P 85-93
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a5/
%G en
%F DMGAA_2013_33_1_a5
Mondal, Tapas; Bhuniya, Anjan. On k-radicals of Green's relations in semirings with a semilattice additive reduct. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 85-93. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a5/

[1] A.K. Bhuniya, On the additively regular semirings, Ph.D Thesis, University of Calcutta, 2009.

[2] A.K. Bhuniya and K. Jana, Bi-ideals in k-regular and intra k-regular semirings, Discuss. Math. General Algebra and Applications 31 (2011) 5-25. ISSN 2084-0373

[3] A.K. Bhuniya and T.K. Mondal, Distributive lattice decompositions of semirings with a semilattice additive reduct, Semigroup Forum 80 (2010) 293-301. doi: 10.1007/s00233-009-9205-6

[4] A.K. Bhuniya and T.K. Mondal, Semirings which are distributive lattices of left k-Archimedean semirings, Semigroup Forum (to appear). ISSN 1432-2137

[5] A.K. Bhuniya and T.K. Mondal, Semirings which are distributive lattices of k-simple semirings, Southeast Asian Bulletin of Mathematics 36 (2012) 309-318. ISSN 0129-2021

[6] S. Bogdanović and M. Ćirić, A note on radicals of Green's relations, PU.M.A 7 (1996) 215-219. ISSN 1218-4586

[7] S. Bogdanović and M. Ćirić, A note on left regular semigroups Publ. Math. Debrecen 48 (3-4) (1996) 285-291. ISSN 0033-3883

[8] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups I, Amer. Math. Soc., 1977. ISBN 0-8218-0271-2

[9] A.H. Clifford, Semigroups admitting relative inverses, Ann. Math. 42 (1941) 1037-1049. ISSN 1939-0980

[10] U. Hebisch and H.J. Weinert, Semirings. Algebraic Theory and Applications in Computer Science (Singapore, World Scientific, 1998). ISBN 981-02-3601-8

[11] J.M. Howie, Fundamentals of semigroup theory (Clarendon, Oxford, 1995). Reprint in 2003. ISBN 0-19-851194-9

[12] G.L. Litvinov and V.P. Maslov, The Correspondence principle for idempotent calculus and some computer applications, in: Idempotency, J. Gunawardena (Editor), (Cambridge, Cambridge Univ. Press, 1998) 420-443.

[13] G.L. Litvinov, V.P. Maslov and A.N. Sobolevskii, Idempotent Mathematics and Interval Analysis, Preprint ESI 632, The Erwin Schrödinger International Institute for Mathematical Physics, Vienna, 1998; e-print: http://www.esi.ac.at and http://arXiv.org,math.Sc/9911126.

[14] T.K. Mondal, Distributive lattices of t-k-Archimedean semirings, Discuss. Math. General Algebra and Applications 31 (2011), 147-158. doi: 10.7151/dmgaa.1179

[15] T.K. Mondal and A.K. Bhuniya, Semirings which are distributive lattices of t-k-simple semirings, submitted.

[16] M.K. Sen and A.K. Bhuniya, On semirings whose additive reduct is a semilattice, Semigroup forum 82 (2011) 131-140. doi: 10.1007/s00233-010-9271-9

[17] L.N. Shevrin, Theory of epigroups I, Mat. Sbornic 185 (8) (1994) 129-160. ISSN 1468-4802

[18] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914-920. ISSN 1088-9485