Bi-ideals in Clifford ordered semigroup
Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 73-84.

Voir la notice de l'article provenant de la source Library of Science

In this paper we characterize both the Clifford and left Clifford ordered semigroups by their bi-ideals and quasi-ideals. Also we characterize principal bi-ideal generated by an ordered idempotent in a completely regular ordered semigroup.
Keywords: Clifford (completely regular) ordered semigroup, ordered idempotents, bi-ideals, quasi-ideals
@article{DMGAA_2013_33_1_a4,
     author = {Hansda, Kalyan},
     title = {Bi-ideals in {Clifford} ordered semigroup},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {73--84},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a4/}
}
TY  - JOUR
AU  - Hansda, Kalyan
TI  - Bi-ideals in Clifford ordered semigroup
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2013
SP  - 73
EP  - 84
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a4/
LA  - en
ID  - DMGAA_2013_33_1_a4
ER  - 
%0 Journal Article
%A Hansda, Kalyan
%T Bi-ideals in Clifford ordered semigroup
%J Discussiones Mathematicae. General Algebra and Applications
%D 2013
%P 73-84
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a4/
%G en
%F DMGAA_2013_33_1_a4
Hansda, Kalyan. Bi-ideals in Clifford ordered semigroup. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 73-84. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a4/

[1] A.K. Bhuniya and K. Hansda, Complete semilattice of ordered semigroups, communicated.

[2] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952) 624-625.

[3] U. Hebisch and H.J. Weinert, Semirings: Algebraic Theory and Applications in Computer Science, World Scientific, Singapore, 1998.

[4] J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.

[5] A. Iampan, On bi-ideals of semigroups, Lobachevskii J. Math. 29 (2) (2008) 68-72. doi: 10.1134/S1995080208020042

[6] N. Kehayopulu, Note on Green's relation in ordered semigroup, Math. Japonica 36 (1991) 211-214.

[7] N. Kehayopulu, On completely regular poe-semigroups, Math. Japonica 37 (1992) 123-130.

[8] N. Kehayopulu, On regular duo ordered semigroups, Math. Japonica 37 (1992) 535-540.

[9] N. Kehayopulu, J.S. Ponizovskii and M. Tsingelis, Bi-ideals in ordered semigroups and ordered groups, J. Math. Sciences 112 (4) (2002). ISSN: 1573-8795

[10] N. Kehayopulu, Ideals and Green's relations in ordered semigroups, International Journal of Mathematics and Mathematical Sciences (2006), 1-8, Article ID 61286. doi: 10.1155/IJMMS/2006/61286

[11] S. Lajos, On (m,n)-ideals of semigroups, Abstract of Second Hunger. Math. Congress I (1960) 42-44.

[12] S. Lajos, On the bi-ideals in Semigroups, Proc. Japan Acad. 45 (8) (1969) 710-712. doi: 10.3792/pja/1195520625

[13] S. Lajos, Notes on semilattices of groups, Proc. Japan Acad. 46 (2) (1970) 151-152. doi: 10.3792/pja/1195520460

[14] S. Lajos, A characterization of Cliffordian semigroups, Proc. Japan Acad. 52 (9) (1976) 496-497. doi: 10.3792/pja/1195518214

[15] S. Lajos, Some characterization of regular duo semigroup, Proc. Japan Acad. 46 (10) (1970) 1099-1101. doi: 10.3792/pja/1195526501

[16] S. Lee and S. Kang, Characterization of regular po-semigroup, Commu. Korean Math. Soc. 14 (4) (1999) 687-691.

[17] M.M. Miccoli, Bi-ideals in regular semigroups and orthogroups, Acta. Math. Hung. 47 (1-2) (1986) 3-6. doi: 10.1007/BF01949118

[18] O. Steinfeld, Quasi-ideals in rings and regular semigroups, Akademiai Ki-ado, Budapest (1958). doi: 10.1007/BF02572529