Lie ideals in prime Γ-rings with derivations
Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 49-56.

Voir la notice de l'article provenant de la source Library of Science

Let M be a 2 and 3-torsion free prime Γ-ring, d a nonzero derivation on M and U a nonzero Lie ideal of M. In this paper it is proved that U is a central Lie ideal of M if d satisfies one of the following
Keywords: prime Γ-rings, Lie ideals, derivations
@article{DMGAA_2013_33_1_a2,
     author = {Suliman, Nishteman and Majeed, Abdul-Rahman},
     title = {Lie ideals in prime {\ensuremath{\Gamma}-rings} with derivations},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {49--56},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a2/}
}
TY  - JOUR
AU  - Suliman, Nishteman
AU  - Majeed, Abdul-Rahman
TI  - Lie ideals in prime Γ-rings with derivations
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2013
SP  - 49
EP  - 56
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a2/
LA  - en
ID  - DMGAA_2013_33_1_a2
ER  - 
%0 Journal Article
%A Suliman, Nishteman
%A Majeed, Abdul-Rahman
%T Lie ideals in prime Γ-rings with derivations
%J Discussiones Mathematicae. General Algebra and Applications
%D 2013
%P 49-56
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a2/
%G en
%F DMGAA_2013_33_1_a2
Suliman, Nishteman; Majeed, Abdul-Rahman. Lie ideals in prime Γ-rings with derivations. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 49-56. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a2/

[1] W. E. Barness, On the Γ-Rings of Nobusawa, Pacific J. Math. 18 (1966) 411-422. doi: 10.2140/pjm.1966.18.411.

[2] J. Bergan, I. N. Herstein, and W. Kerr, Lie Ideals and Derivations of Prime Rings, J. Algebra 71 (1981) 259-267. doi: 10.1016/0021-8693(81)90120-4.

[3] A. K. Halder and A. C. Paul, Jordan Left Derivations on Lie Ideals of Prime Γ-Rings, Punjab Univ. J. of Math. (2011) 1-7.

[4] P.H.Lee and T.K.Lee, Lie Ideals of Prime Rings with Derivations, Bull. Inst. Math. Acad. Scin. 11 (1983) 75-80.

[5] N. Nobusawa, On a Generlazetion of the Ring Theory, Osaka J. Math. 1 (1964) 81-89.

[6] M. Soyturk, The Commutativity in Prime Gamma Rings with Derivation, Tr. J. Math. 18 (1994) 149-155.