Derivations in some finite endomorphism semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 32 (2012) no. 1, pp. 77-100 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

The goal of this paper is to provide some basic structure information on derivations in finite semirings.
Keywords: endomorphism semiring, derivations, differential algebra
@article{DMGAA_2012_32_1_a3,
     author = {Trendafilov, Ivan},
     title = {Derivations in some finite endomorphism semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {77--100},
     year = {2012},
     volume = {32},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a3/}
}
TY  - JOUR
AU  - Trendafilov, Ivan
TI  - Derivations in some finite endomorphism semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2012
SP  - 77
EP  - 100
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a3/
LA  - en
ID  - DMGAA_2012_32_1_a3
ER  - 
%0 Journal Article
%A Trendafilov, Ivan
%T Derivations in some finite endomorphism semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2012
%P 77-100
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a3/
%G en
%F DMGAA_2012_32_1_a3
Trendafilov, Ivan. Derivations in some finite endomorphism semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 32 (2012) no. 1, pp. 77-100. http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a3/

[1] Rings with generalized identities (Marcel Dekker, 1996).

[2] Classical Finite Transformation Semigroups: An Introduction (Springer-Verlag London Limited, 2009). doi: 10.1007/978-1-84800-281-4

[3] Semirings and Their Applications (Kluwer, Dordrecht, 1999).

[4] Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104-1110. doi: 10.1090/S0002-9939-1957-0095864-2

[5] Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc. 67 (1961) 517-531. doi: 10.1090/S0002-9904-1961-10666-6

[6] Noncommutative Rings (Carus Mathematical Monographs, 1968).

[7] On the Lie structure of an associative ring, J. Algebra 14 (1970) 561-571. doi: 10.1016/0021-8693(70)90103-1

[8] J. Jeẑek, T. Kepka and M. Maròti, The endomorphism semiring of a semilattice, Semigroup Forum 78 (2009) 21-26. doi: 10.1007/s00233-008-9045-9

[9] Differential Algebra and Algebraic Groups (Academic Press, New York, London, 1973).

[10] On finite congruence-simple semirings, J. Algebra 271 (2004) 846-854. doi: 10.1016/jalgebra2003.09.034

[11] Differential Algebra (Amer. Math. Soc. Colloq. Publ. 33, New York 1950).

[12] The endomorphism semiring of a finite chain, Proc. Techn. Univ.-Sofia 61 (2011) 9-18 ISSN 1311-0829

[13] Endomorphism semirings without zero of a finite chain, Proc. Techn. Univ.-Sofia 61 (2011) 9-18 ISSN 1311-0829

[14] I. Trendafilov and D. Vladeva, On some subsemigroups of the partial transformation semigroup, in: Appl.Math. in Eng. and Econ.-38th Int. Conf. 2012, G.Venkov(Ed(s)), (AIP Conf. Proc. 1497, 2012) 371-378. doi: 10.1063/1.4766807

[15] Classification of finite congruence-simple semirings with zero, J. Algebra Appl. 7 (2008) 363-377. doi: 10.1142/S0219498808002862