Derivations in some finite endomorphism semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 32 (2012) no. 1, pp. 77-100.

Voir la notice de l'article provenant de la source Library of Science

The goal of this paper is to provide some basic structure information on derivations in finite semirings.
Keywords: endomorphism semiring, derivations, differential algebra
@article{DMGAA_2012_32_1_a3,
     author = {Trendafilov, Ivan},
     title = {Derivations in some finite endomorphism semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {77--100},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a3/}
}
TY  - JOUR
AU  - Trendafilov, Ivan
TI  - Derivations in some finite endomorphism semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2012
SP  - 77
EP  - 100
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a3/
LA  - en
ID  - DMGAA_2012_32_1_a3
ER  - 
%0 Journal Article
%A Trendafilov, Ivan
%T Derivations in some finite endomorphism semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2012
%P 77-100
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a3/
%G en
%F DMGAA_2012_32_1_a3
Trendafilov, Ivan. Derivations in some finite endomorphism semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 32 (2012) no. 1, pp. 77-100. http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a3/

[1] Rings with generalized identities (Marcel Dekker, 1996).

[2] Classical Finite Transformation Semigroups: An Introduction (Springer-Verlag London Limited, 2009). doi: 10.1007/978-1-84800-281-4

[3] Semirings and Their Applications (Kluwer, Dordrecht, 1999).

[4] Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104-1110. doi: 10.1090/S0002-9939-1957-0095864-2

[5] Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc. 67 (1961) 517-531. doi: 10.1090/S0002-9904-1961-10666-6

[6] Noncommutative Rings (Carus Mathematical Monographs, 1968).

[7] On the Lie structure of an associative ring, J. Algebra 14 (1970) 561-571. doi: 10.1016/0021-8693(70)90103-1

[8] J. Jeẑek, T. Kepka and M. Maròti, The endomorphism semiring of a semilattice, Semigroup Forum 78 (2009) 21-26. doi: 10.1007/s00233-008-9045-9

[9] Differential Algebra and Algebraic Groups (Academic Press, New York, London, 1973).

[10] On finite congruence-simple semirings, J. Algebra 271 (2004) 846-854. doi: 10.1016/jalgebra2003.09.034

[11] Differential Algebra (Amer. Math. Soc. Colloq. Publ. 33, New York 1950).

[12] The endomorphism semiring of a finite chain, Proc. Techn. Univ.-Sofia 61 (2011) 9-18 ISSN 1311-0829

[13] Endomorphism semirings without zero of a finite chain, Proc. Techn. Univ.-Sofia 61 (2011) 9-18 ISSN 1311-0829

[14] I. Trendafilov and D. Vladeva, On some subsemigroups of the partial transformation semigroup, in: Appl.Math. in Eng. and Econ.-38th Int. Conf. 2012, G.Venkov(Ed(s)), (AIP Conf. Proc. 1497, 2012) 371-378. doi: 10.1063/1.4766807

[15] Classification of finite congruence-simple semirings with zero, J. Algebra Appl. 7 (2008) 363-377. doi: 10.1142/S0219498808002862