Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2012_32_1_a3, author = {Trendafilov, Ivan}, title = {Derivations in some finite endomorphism semirings}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {77--100}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a3/} }
TY - JOUR AU - Trendafilov, Ivan TI - Derivations in some finite endomorphism semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2012 SP - 77 EP - 100 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a3/ LA - en ID - DMGAA_2012_32_1_a3 ER -
Trendafilov, Ivan. Derivations in some finite endomorphism semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 32 (2012) no. 1, pp. 77-100. http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a3/
[1] Rings with generalized identities (Marcel Dekker, 1996).
[2] Classical Finite Transformation Semigroups: An Introduction (Springer-Verlag London Limited, 2009). doi: 10.1007/978-1-84800-281-4
[3] Semirings and Their Applications (Kluwer, Dordrecht, 1999).
[4] Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104-1110. doi: 10.1090/S0002-9939-1957-0095864-2
[5] Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc. 67 (1961) 517-531. doi: 10.1090/S0002-9904-1961-10666-6
[6] Noncommutative Rings (Carus Mathematical Monographs, 1968).
[7] On the Lie structure of an associative ring, J. Algebra 14 (1970) 561-571. doi: 10.1016/0021-8693(70)90103-1
[8] J. Jeẑek, T. Kepka and M. Maròti, The endomorphism semiring of a semilattice, Semigroup Forum 78 (2009) 21-26. doi: 10.1007/s00233-008-9045-9
[9] Differential Algebra and Algebraic Groups (Academic Press, New York, London, 1973).
[10] On finite congruence-simple semirings, J. Algebra 271 (2004) 846-854. doi: 10.1016/jalgebra2003.09.034
[11] Differential Algebra (Amer. Math. Soc. Colloq. Publ. 33, New York 1950).
[12] The endomorphism semiring of a finite chain, Proc. Techn. Univ.-Sofia 61 (2011) 9-18 ISSN 1311-0829
[13] Endomorphism semirings without zero of a finite chain, Proc. Techn. Univ.-Sofia 61 (2011) 9-18 ISSN 1311-0829
[14] I. Trendafilov and D. Vladeva, On some subsemigroups of the partial transformation semigroup, in: Appl.Math. in Eng. and Econ.-38th Int. Conf. 2012, G.Venkov(Ed(s)), (AIP Conf. Proc. 1497, 2012) 371-378. doi: 10.1063/1.4766807
[15] Classification of finite congruence-simple semirings with zero, J. Algebra Appl. 7 (2008) 363-377. doi: 10.1142/S0219498808002862