Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2012_32_1_a0, author = {Costa, Jo\~ao Pita}, title = {On ideals of a skew lattice}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {5--21}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a0/} }
Costa, João Pita. On ideals of a skew lattice. Discussiones Mathematicae. General Algebra and Applications, Tome 32 (2012) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a0/
[1] A. Bauer and K. Cvetko-Vah, Stone duality for skew Boolean algebras with intersections, Arxiv preprint arXiv:1106.0425, Houston Journal of Mathematics (to appear, 2012).
[2] R. Bignall and J. Leech, Skew Boolean algebras and discriminator varieties, Algebra Universalis 33 (1995) 387-398. doi: 10.1007/BF01190707
[3] G. Birkhoff, Lattice Theory, volume 5, AMS Colloquium Publications (Providence RI, third edition, 1940).
[4] W.H. Cornish, Boolean skew algebras, Acta Mathematica Academiae Scientiarurn Hungarkcae 36 (3-4) (1980) 281-291. doi: 10.1007/BF01898144
[5] K. Cvetko-Vah and J. Pita Costa, On the coset laws for skew lattices, Semigroup Forum 8 (2011) 395-411. doi: 10.1007/s00233-011-9325-7
[6] G. Grätzer, Lattice Theory (San Francisco, WH Freeman and Co, 1971).
[7] J.M. Howie, An Introduction to Semigroup Theory (Academic Press, 1976).
[8] P. Jordan, The mathematical theory of quasiorder, semigroups of idempotents and noncommutative lattices - a new field of modern algebra, Technical report, Armed Services Technical Information Agency (Arlington, Virginia, 1961).
[9] M. Kinyon and J. Leech, Categorical Skew Lattices, arXiv:1201.3033 (2012).
[10] J. Leech, Towards a theory of noncommutative lattices, Semigroup Forum 34 (1986) 117-120. doi: 10.1007/BF02573155
[11] J. Leech, Skew lattices in rings, Algebra Universalis 26 (1989) 48-72. doi: 10.1007/BF01243872
[12] J. Leech, Skew boolean algebras, Algebra Universalis 27 (1990) 497-506. doi: 10.1007/BF01188995
[13] J. Leech, Normal skew lattices, Semigroup Forum 44 (1992) 1-8. doi: 10.1007/BF02574320
[14] J. Leech, The geometric structure of skew lattices, Trans. Amer. Math. Soc. 335 (1993) 823-842. doi: 10.1090/S0002-9947-1993-1080169-X
[15] J. Leech, Recent developments in the theory of skew lattices, Semigroup Forum 52 (1996) 7-24. doi: 10.1007/BF02574077
[16] J. Leech and M. Spinks, Skew Boolean algebras derived from generalized Boolean algebras, Algebra Universalis 58 (2008) 287-302. doi: 10.1007/s00012-008-2069-x
[17] J. Pita Costa, Coset Laws for Categorical Skew Lattices (Algebra Univers., in press, 2011).
[18] J. Pita Costa, On the coset structure of skew lattices, Demonstratio Mathematica 44 (4) (2011) 1-19.
[19] J. Pita Costa, On the Coset Structure of Skew Lattices (PhD thesis, University of Ljubljana, 2012).
[20] B.M. Schein, Pseudosemilattices and pseudolattices, Amer. Math. Soc. Transl. 119 (1983) 1-16.
[21] V. Slavík, On skew lattices I, Comment. Math. Univer. Carolinae 14 (1973) 73-85.
[22] W. Wechler, Universal Algebra for Computer Scientists (Springer-Verlag, Berlin, 1992). doi: 10.1007/978-3-642-76771-5