On ideals of a skew lattice
Discussiones Mathematicae. General Algebra and Applications, Tome 32 (2012) no. 1, pp. 5-21.

Voir la notice de l'article provenant de la source Library of Science

Ideals are one of the main topics of interest when it comes to the study of the order structure of an algebra. Due to their nice properties, ideals have an important role both in lattice theory and semigroup theory. Two natural concepts of ideal can be derived, respectively, from the two concepts of order that arise in the context of skew lattices. The correspondence between the ideals of a skew lattice, derived from the preorder, and the ideals of its respective lattice image is clear. Though, skew ideals, derived from the partial order, seem to be closer to the specific nature of skew lattices. In this paper we review ideals in skew lattices and discuss the intersection of this with the study of the coset structure of a skew lattice.
Keywords: noncommutative lattice, skew lattice, band of semigroups, ideals, coset structure, Green's relations, skew Boolean algebras
@article{DMGAA_2012_32_1_a0,
     author = {Costa, Jo\~ao Pita},
     title = {On ideals of a skew lattice},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a0/}
}
TY  - JOUR
AU  - Costa, João Pita
TI  - On ideals of a skew lattice
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2012
SP  - 5
EP  - 21
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a0/
LA  - en
ID  - DMGAA_2012_32_1_a0
ER  - 
%0 Journal Article
%A Costa, João Pita
%T On ideals of a skew lattice
%J Discussiones Mathematicae. General Algebra and Applications
%D 2012
%P 5-21
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a0/
%G en
%F DMGAA_2012_32_1_a0
Costa, João Pita. On ideals of a skew lattice. Discussiones Mathematicae. General Algebra and Applications, Tome 32 (2012) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a0/

[1] A. Bauer and K. Cvetko-Vah, Stone duality for skew Boolean algebras with intersections, Arxiv preprint arXiv:1106.0425, Houston Journal of Mathematics (to appear, 2012).

[2] R. Bignall and J. Leech, Skew Boolean algebras and discriminator varieties, Algebra Universalis 33 (1995) 387-398. doi: 10.1007/BF01190707

[3] G. Birkhoff, Lattice Theory, volume 5, AMS Colloquium Publications (Providence RI, third edition, 1940).

[4] W.H. Cornish, Boolean skew algebras, Acta Mathematica Academiae Scientiarurn Hungarkcae 36 (3-4) (1980) 281-291. doi: 10.1007/BF01898144

[5] K. Cvetko-Vah and J. Pita Costa, On the coset laws for skew lattices, Semigroup Forum 8 (2011) 395-411. doi: 10.1007/s00233-011-9325-7

[6] G. Grätzer, Lattice Theory (San Francisco, WH Freeman and Co, 1971).

[7] J.M. Howie, An Introduction to Semigroup Theory (Academic Press, 1976).

[8] P. Jordan, The mathematical theory of quasiorder, semigroups of idempotents and noncommutative lattices - a new field of modern algebra, Technical report, Armed Services Technical Information Agency (Arlington, Virginia, 1961).

[9] M. Kinyon and J. Leech, Categorical Skew Lattices, arXiv:1201.3033 (2012).

[10] J. Leech, Towards a theory of noncommutative lattices, Semigroup Forum 34 (1986) 117-120. doi: 10.1007/BF02573155

[11] J. Leech, Skew lattices in rings, Algebra Universalis 26 (1989) 48-72. doi: 10.1007/BF01243872

[12] J. Leech, Skew boolean algebras, Algebra Universalis 27 (1990) 497-506. doi: 10.1007/BF01188995

[13] J. Leech, Normal skew lattices, Semigroup Forum 44 (1992) 1-8. doi: 10.1007/BF02574320

[14] J. Leech, The geometric structure of skew lattices, Trans. Amer. Math. Soc. 335 (1993) 823-842. doi: 10.1090/S0002-9947-1993-1080169-X

[15] J. Leech, Recent developments in the theory of skew lattices, Semigroup Forum 52 (1996) 7-24. doi: 10.1007/BF02574077

[16] J. Leech and M. Spinks, Skew Boolean algebras derived from generalized Boolean algebras, Algebra Universalis 58 (2008) 287-302. doi: 10.1007/s00012-008-2069-x

[17] J. Pita Costa, Coset Laws for Categorical Skew Lattices (Algebra Univers., in press, 2011).

[18] J. Pita Costa, On the coset structure of skew lattices, Demonstratio Mathematica 44 (4) (2011) 1-19.

[19] J. Pita Costa, On the Coset Structure of Skew Lattices (PhD thesis, University of Ljubljana, 2012).

[20] B.M. Schein, Pseudosemilattices and pseudolattices, Amer. Math. Soc. Transl. 119 (1983) 1-16.

[21] V. Slavík, On skew lattices I, Comment. Math. Univer. Carolinae 14 (1973) 73-85.

[22] W. Wechler, Universal Algebra for Computer Scientists (Springer-Verlag, Berlin, 1992). doi: 10.1007/978-3-642-76771-5