Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2011_31_2_a6, author = {Dymek, Grzegorz}, title = {On two classes of {pseudo-BCI-algebras}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {217--174}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a6/} }
Dymek, Grzegorz. On two classes of pseudo-BCI-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 2, pp. 217-174. http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a6/
[1] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187-190.
[2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, submitted.
[3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, submitted.
[4] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Val. Log. Soft Comput., to appear.
[5] G. Dymek and A. Kozanecka-Dymek, Pseudo-BCI-logic, submitted.
[6] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS'01: Combinatorics, Computability and Logic, Springer, London, 2001, 97-114.
[7] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000, Slovakia, February 2000, 90-92.
[8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, Bucharest, Romania, May (1999), 961-968.
[9] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE, Bucharest, 2008.
[10] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Academy 42 (1966), 26-29. doi: 10.3792/pja/1195522171
[11] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39-46.
[12] K.J. Lee and C.H. Park, Some ideals of pseudo-BCI algebras, J. Appl. Math. Informatics 27 (2009), 217-231.
[13] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213.