Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2011_31_2_a4, author = {Mihoubi, Miloud and Belbachir, Hac\`ene}, title = {Polynomials of multipartitional type and inverse relations}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {185--199}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a4/} }
TY - JOUR AU - Mihoubi, Miloud AU - Belbachir, Hacène TI - Polynomials of multipartitional type and inverse relations JO - Discussiones Mathematicae. General Algebra and Applications PY - 2011 SP - 185 EP - 199 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a4/ LA - en ID - DMGAA_2011_31_2_a4 ER -
%0 Journal Article %A Mihoubi, Miloud %A Belbachir, Hacène %T Polynomials of multipartitional type and inverse relations %J Discussiones Mathematicae. General Algebra and Applications %D 2011 %P 185-199 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a4/ %G en %F DMGAA_2011_31_2_a4
Mihoubi, Miloud; Belbachir, Hacène. Polynomials of multipartitional type and inverse relations. Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 2, pp. 185-199. http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a4/
[1] [1] H. Belbachir, S. Bouroubi and A. Khelladi, Connection between ordinary multinomials, generalized Fibonacci numbers, partial Bell partition polynomials and convolution powers of discrete uniform distribution, Ann. Math. Inform. 35 (2008), 21-30.
[2] [2] H. Belbachir, Determining the mode for convolution powers of discrete uniform distribution, Probability in the Engineering and Informational Sciences 25 (2011), 469-475. doi: 10.1017/S0269964811000131
[3] [3] E.T. Bell, Exponential polynomials, Ann. Math. 35 (1934), 258-277. doi: 10.2307/1968431
[4] [4] W.S. Chou, L.C. Hsu and P.J.S. Shiue, Application of Faà di Bruno's formula in characterization of inverse relations, J. Comput. Appl. Math. 190 (2006), 151-169. doi: 10.1016/j.cam.2004.12.041
[5] [5]L. Comtet, Advanced Combinatorics (Dordrecht, Netherlands, Reidel, 1974). doi: 10.1007/978-94-010-2196-8
[6] [6] M. Mihoubi, Bell polynomials and binomial type sequences, Discrete Math. 308 (2008), 2450-2459. doi: 10.1016/j.disc.2007.05.010
[7] [7] M. Mihoubi, Bell polynomials and inverse relations, J. Integer Seq. 13 (2010), Article 10.4.5.
[8] [8] M. Mihoubi, The role of binomial type sequences in determination identities for Bell polynomials, to appear in Ars Combin., Preprint available at online: http://arxiv.org/abs/0806.3468v1.
[9] [9] J. Riordan, Combinatorial Identities (Huntington, NewYork, 1979).
[10] [10] S. Roman, The Umbral Calculus (New York: Academic Press, 1984).