Polynomials of multipartitional type and inverse relations
Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 2, pp. 185-199.

Voir la notice de l'article provenant de la source Library of Science

Chou, Hsu and Shiue gave some applications of Faà di Bruno's formula to characterize inverse relations. Our aim is to develop some inverse relations connected to the multipartitional type polynomials involving to binomial type sequences.
Keywords: Bell polynomials, inverses relations, polynomials of multipartitional type, binomial type sequences
@article{DMGAA_2011_31_2_a4,
     author = {Mihoubi, Miloud and Belbachir, Hac\`ene},
     title = {Polynomials of multipartitional type and inverse relations},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {185--199},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a4/}
}
TY  - JOUR
AU  - Mihoubi, Miloud
AU  - Belbachir, Hacène
TI  - Polynomials of multipartitional type and inverse relations
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2011
SP  - 185
EP  - 199
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a4/
LA  - en
ID  - DMGAA_2011_31_2_a4
ER  - 
%0 Journal Article
%A Mihoubi, Miloud
%A Belbachir, Hacène
%T Polynomials of multipartitional type and inverse relations
%J Discussiones Mathematicae. General Algebra and Applications
%D 2011
%P 185-199
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a4/
%G en
%F DMGAA_2011_31_2_a4
Mihoubi, Miloud; Belbachir, Hacène. Polynomials of multipartitional type and inverse relations. Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 2, pp. 185-199. http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a4/

[1] [1] H. Belbachir, S. Bouroubi and A. Khelladi, Connection between ordinary multinomials, generalized Fibonacci numbers, partial Bell partition polynomials and convolution powers of discrete uniform distribution, Ann. Math. Inform. 35 (2008), 21-30.

[2] [2] H. Belbachir, Determining the mode for convolution powers of discrete uniform distribution, Probability in the Engineering and Informational Sciences 25 (2011), 469-475. doi: 10.1017/S0269964811000131

[3] [3] E.T. Bell, Exponential polynomials, Ann. Math. 35 (1934), 258-277. doi: 10.2307/1968431

[4] [4] W.S. Chou, L.C. Hsu and P.J.S. Shiue, Application of Faà di Bruno's formula in characterization of inverse relations, J. Comput. Appl. Math. 190 (2006), 151-169. doi: 10.1016/j.cam.2004.12.041

[5] [5]L. Comtet, Advanced Combinatorics (Dordrecht, Netherlands, Reidel, 1974). doi: 10.1007/978-94-010-2196-8

[6] [6] M. Mihoubi, Bell polynomials and binomial type sequences, Discrete Math. 308 (2008), 2450-2459. doi: 10.1016/j.disc.2007.05.010

[7] [7] M. Mihoubi, Bell polynomials and inverse relations, J. Integer Seq. 13 (2010), Article 10.4.5.

[8] [8] M. Mihoubi, The role of binomial type sequences in determination identities for Bell polynomials, to appear in Ars Combin., Preprint available at online: http://arxiv.org/abs/0806.3468v1.

[9] [9] J. Riordan, Combinatorial Identities (Huntington, NewYork, 1979).

[10] [10] S. Roman, The Umbral Calculus (New York: Academic Press, 1984).